SA22-7201-06

Enterprise Systems Architecture/390

Principles of Operation

SA22-7201-06

Enterprise Systems Architecture/390

Principles of Operation

Note:

Before using this information and the product it supports, be sure to read the general information under FNotices” on page xviil

Seventh Edition (July 1999)
This edition obsoletes and replaces Enterprise Systems Architecture/390 Principles of Operation, SA22-7201-05.

This publication is provided for use in conjunction with other relevant IBM publications, and IBM makes no warranty, express or
implied, about its completeness or accuracy. The information in this publication is current as of its publication date but is subject to
change without notice.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department E57A Mail Station P318

522 South Road

Poughkeepsie, N.Y., 12601-5400

United States of America

FAX (United States & Canada): 914+432-9405

FAX (Other Countries): Your International Access Code+1+914+432-9405
IBMLink (United States customers only): KGNVMC (MHVRCFS)

IBM Mail Exchange: USIB6TC9 at IBMMAIL

Internet e-mail: mhvrcfs@vnet.ibm.com

World Wide Web: http://www.s390.ibm.com/0s390

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999. All rights
reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices
Trademarks

Preface
Size and Number Notation
Bytes, Characters, and Codes
Other Publications

Summary of Changes in Seventh Edition

Summary of Changes in Sixth Edition

Summary of Changes in Fifth Edition

Summary of Changes in Fourth Edition

Summary of Changes in Third Edition

Summary of Changes in Second Edition . . .

Chapter 1. Introduction
Highlights of ESA/390
The ESA/370 and 370-XA Base
System Program
Compatibility
Compatibility among ESA/390 Systems . .
Compatibility among ESA/390, ESA/370,
370-XA, and System/370
Control-Program Compatibility
Problem-State Compatibility
Availability

Chapter 2. Organization
Main Storage
Expanded Storage
CPU
PSW
General Registers
Floating-Point Registers
Floating-Point-Control (FPC) Register . . .
Control Registers
Access Registers
Vector Facility
Cryptographic Facility
External Time Reference
I/O
Channel Subsystem
Channel Paths
I/O Devices and Control Units
Operator Facilities

Chapter 3. Storage
Storage Addressing
Information Formats
Integral Boundaries
Address Types and Formats

1-9

Address Types
Absolute Address
Real Address
Virtual Address
Primary Virtual Address
Secondary Virtual Address
AR-Specified Virtual Address
Home Virtual Address
Logical Address
Instruction Address
Effective Address
Address Size and Wraparound
Address Wraparound
Storage Key
Protection
Key-Controlled Protection
Storage-Protection-Override Control
Fetch-Protection-Override Control
Access-List-Controlled Protection
Page Protection
Low-Address Protection
Suppression on Protection
Reference Recording
Change Recording
Prefixing
Address Spaces
Changing to Different Address Spaces .
Address-Space Number
ASN Translation
ASN-Translation Controls
Control Register 14
Control Register 0
ASN-Translation Tables
ASN-First-Table Entries
ASN-Second-Table Entries
ASN-Translation Process
ASN-First-Table Lookup
ASN-Second-Table Lookup
Recognition of Exceptions during ASN
Translation
ASN Authorization
ASN-Authorization Controls
Control Register 4
ASN-Second-Table Entry
Authority-Table Entries
ASN-Authorization Process
Authority-Table Lookup
Recognition of Exceptions during ASN
Authorization
Dynamic Address Translation

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999

Translation Control
Translation Modes
Control Register 0
Control Register 1
Control Register 7
Control Register 13

Translation Tables
Segment-Table Entries
Page-Table Entries
Summary of Segment-Table and

Page-Table Sizes

Translation Process
Effective Segment-Table Designation
Inspection of Control Register 0
Segment-Table Lookup
Page-Table Lookup
Formation of the Real Address
Recognition of Exceptions during

Translation

Translation-Lookaside Buffer
TLB Structure
Formation of TLB Entries
Use of TLB Entries
Modification of Translation Tables

Address Summary
Addresses Translated
Handling of Addresses

Assigned Storage Locations

Chapter 4. Control
Stopped, Operating, Load, and Check-Stop
States
Stopped State

Operating State
Load State
Check-Stop State
Program-Status Word
Program-Status-Word Format
Control Registers
Tracing
Control-Register Allocation
Trace Entries
Operation
Program-Event Recording
Control-Register Allocation and
Segment-Table Designation
Operation
Identification of Cause
Priority of Indication
Storage-Area Designation
PER Events
Successful Branching
Instruction Fetching
Storage Alteration

iV ESA/390 Principles of Operation

3-27
3-28
3-28
3-28
3-29
3-29
3-30
3-30
3-31

3-31
3-31

. 3-32
. 3-34

3-34
3-35
3-35

3-35
3-35
3-36
3-36
3-37

. 3-38

3-40
3-40
3-40
3-43

4-1

General-Register Alteration
Store Using Real Address
Indication of PER Events Concurrently
with Other Interruption Conditions
Timing
Time-of-Day Clock
Format
States
Changes in Clock State
Setting and Inspecting the Clock
/ TOD Programmable Register
TOD-Clock Synchronization
Clock Comparator
CPU Timer
Externally Initiated Functions
Resets
CPU Reset
Initial CPU Reset
Subsystem Reset
Clear Reset
Power-On Reset
Initial Program Loading
Store Status
Multiprocessing
Shared Main Storage
CPU-Address ldentification
CPU Signaling and Response
Signal-Processor Orders
Conditions Determining Response
Conditions Precluding Interpretation of
the Order Code
Status Bits

Chapter 5. Program Execution
Instructions
Operands
Instruction Formats
Register Operands
Immediate Operands
Storage Operands
Address Generation
Bimodal Addressing
Sequential Instruction-Address Generation
Operand-Address Generation
Formation of the Intermediate Value
Formation of the Operand Address . . .
Branch-Address Generation
Formation of the Intermediate Value
Formation of the Branch Address
Instruction Execution and Sequencing
Decision Making
Loop Control
Subroutine Linkage without the Linkage
Stack

Interruptions
Types of Instruction Ending
Completion
Suppression
Nullification
Termination
Interruptible Instructions
Point of Interruption
Unit of Operation
Execution of Interruptible Instructions
Condition-Code Alternative to
Interruptibility
Exceptions to Nullification and
Suppression
Storage Change and Restoration for
DAT-Associated Access Exceptions
Modification of DAT-Table Entries
Trial Execution for Editing Instructions
and Translate Instruction
Authorization Mechanisms
Mode Requirements
Extraction-Authority Control
PSW-Key Mask
Secondary-Space Control
Subsystem-Linkage Control
ASN-Translation Control
Authorization Index
Program-Call-Fast Control
Access-Register and Linkage-Stack
Mechanisms
PC-Number Translation
PC-Number Translation Control
Control Register0
Control Register5
PC-Number Translation Tables
Linkage-Table Entries
Entry-Table Entries
PC-Number-Translation Process
Obtaining the Linkage-Table
Designation
Linkage-Table Lookup
Entry-Table Lookup
Recognition of Exceptions during
PC-Number Translation
Home Address Space
Access-Register Introduction
Summary
Access-Register Functions
Access-Register-Specified Address
Spaces
Access-Register Instructions
Access-Register Translation
Access-Register-Translation Control
Address-Space-Function Control

5-18

5-18

. 5-19

5-19
5-19
5-20
5-20
5-20
5-21
5-21
5-21
5-21
5-22

5-22
5-25
5-25
5-25
5-25
5-26
5-26
5-26
5-28

5-29
5-30
5-30

5-30
5-31
5-31
5-32
5-32

5-32
5-39
5-40
5-40

. 5-40

Control Register2 5-40
Control Register5 5-41
Control Register8 5-41
Access Registers L. 5-41
Access-Register-Translation Tables 5-42
Dispatchable-Unit-Control Table and
Access-List Designations 5-42
Access-List Entries 5-44
Extended ASN-Second-Table Entries . 5-45
Access-Register-Translation Process 5-46
Selecting the Access-List-Entry Token . 5-47
Obtaining the Primary or Secondary
Segment-Table Designation 5-47
Checking the First Byte of the ALET . . 5-47
Obtaining the Effective Access-List
Designation 5-49
Access-List Lookup 5-49
Locating the ASN-Second-Table Entry . 5-50
Authorizing the Use of the Access-List
Entry 5-50
Checking for Access-List-Controlled
Protecton 5-51
Obtaining the Segment-Table
Designation from the
ASN-Second-Table Entry 5-51
Recognition of Exceptions during
Access-Register Translation 5-51
ART-Lookaside Buffer 5-51
ALB Structure 5-51
Formation of ALB Entries 5-51
Modification of ART Tables 5-52
Subspace Groups 5-52
Subspace-Group Tables 5-52
Subspace-Group Dispatchable-Unit
Control Table, 5-53
Subspace-Group ASN-Second-Table
Entries 5-54
Subspace-Replacement Operations 5-56
Linkage-Stack Introduction 5-57
Summary 5-57
Linkage-Stack Functions 5-57
Transferring Program Control 5-58
Branching Using the Linkage Stack 5-59
Adding and Retrieving Information 5-60
Testing Authorization 5-60
Program-Problem Analysis 5-61
Extended Entry-Table Entries 5-61
Linkage-Stack Operations 5-63
Linkage-Stack-Operations Control 5-65
Control Register 0 5-65
Control Register 15 5-65
Linkage Stack 5-65
Entry Descriptors 5-65
Header Entries 5-67

Contents

\Y

Trailer Entries 5-67
State Entries 5-68
Stacking Process 5-70
Locating Space for a New Entry 5-70
Forming the New Entry 5-71
Updating the Current Entry 5-72

Updating Control Register 15 5-72
Recognition of Exceptions during the
Stacking Process 5-72
Unstacking Process 5-72
Locating the Current Entry and
Processing a Header Entry 5-73

Checking for a State Entry 5-74

Restoring Information 5-74
Updating the Preceding Entry 5-74
Updating Control Register 15 5-74
Recognition of Exceptions during the
Unstacking Process 5-74
Sequence of Storage References 5-75
Conceptual Sequence 5-75
Overlapped Operation of Instruction
Execution 5-76
Divisible Instruction Execution 5-76
Interlocks for Virtual-Storage References . 5-76
Interlocks between Instructions 5-77
Interlocks within a Single Instruction 5-77
Instruction Fetching 5-79
ART-Table and DAT-Table Fetches 5-80
Storage-Key Accesses 5-81
Storage-Operand References 5-81
Storage-Operand Fetch References 5-82
Storage-Operand Store References 5-82
Storage-Operand Update References . 5-82
Storage-Operand Consistency 5-83
Single-Access References 5-83
Multiple-Access References 5-84
Block-Concurrent References 5-84
Consistency Specification 5-85
Relation between Operand Accesses 5-86
Other Storage References 5-86
Serialization 00 5-86
CPU Serialization 5-87
Channel-Program Serialization 5-88
Chapter 6. Interruptions 6-1
Interruption Action 6-2
Interruption Code 6-5
Enabling and Disabling 6-6

Handling of Floating Interruption Conditions 6-6

Instruction-Length Code 6-7
ZeroILC 6-7
ILC on Instruction-Fetching Exceptions . 6-7

Exceptions Associated with the PSW . . . 6-9
Early Exception Recognition 6-9

Vi ESA/390 Principles of Operation

Late Exception Recognition
External Interruption
Clock Comparator
CPU Timer
Emergency Signal
ETR
External Call
Interrupt Key
Malfunction Alert
Service Signal
TOD-Clock Sync Check
I/O Interruption
Machine-Check Interruption
Program Interruption
Exception-Extension Code
Data-Exception Code (DXC)
Priority of Program Interruptions for
Data Exceptions
Program-Interruption Conditions
Addressing Exception
AFX-Translation Exception
ALEN-Translation Exception
ALE-Sequence Exception
ALET-Specification Exception
ASN-Translation-Specification
Exception
ASTE-Sequence Exception
ASTE-Validity Exception
ASX-Translation Exception
Data Exception
Decimal-Divide Exception
Decimal-Overflow Exception
Execute Exception
EX-Translation Exception
Extended-Authority Exception
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception
HFP-Divide Exception
HFP-Exponent-Overflow Exception . . .
HFP-Exponent-Underflow Exception
HFP-Significance Exception
HFP-Square-Root Exception
LX-Translation Exception
Monitor Event
Operand Exception
Operation Exception
Page-Translation Exception
PC-Translation-Specification Exception
PER Event
Primary-Authority Exception
Privileged-Operation Exception
Protection Exception
Secondary-Authority Exception
Segment-Translation Exception

Restart Interruption
Supervisor-Call Interruption
Priority of Interruptions

Chapter 7. General Instructions
Data Format
Binary-Integer Representation
Binary Arithmetic

Space-Switch Event
Special-Operation Exception
Specification Exception
Stack-Empty Exception
Stack-Full Exception
Stack-Operation Exception
Stack-Specification Exception
Stack-Type Exception
Trace-Table Exception
Translation-Specification Exception . . .
Unnormalized-Operand Exception .
Vector-Operation Exception
Collective Program-Interruption Names . .
Recognition of Access Exceptions
Multiple Program-Interruption Conditions .
Access Exceptions
ASN-Translation Exceptions
Subspace-Replacement Exceptions .
Trace Exceptions

Signed Binary Arithmetic
Addition and Subtraction
Fixed-Point Overflow

Unsigned Binary Arithmetic

Signed and Logical Comparison
Instructions

ADD
ADD HALFWORD
ADD HALFWORD IMMEDIATE
ADD LOGICAL
AND
BRANCH AND LINK
BRANCH AND SAVE
BRANCH AND SAVE AND SET MODE

BRANCH AND SET MODE

BRANCH ON CONDITION
BRANCH ON COUNT
BRANCH ON INDEX HIGH

BRANCH ON INDEX LOW OR EQUAL . .

BRANCH RELATIVE AND SAVE
BRANCH RELATIVE ON CONDITION

BRANCH RELATIVE ON COUNT

BRANCH RELATIVE ON INDEX HIGH
BRANCH RELATIVE ON INDEX LOW
OR EQUAL
CHECKSUM
COMPARE

COMPARE AND FORM CODEWORD . . 7-23
COMPARE AND SWAP 7-27
COMPARE DOUBLE AND SWAP 7-27
COMPARE HALFWORD
COMPARE HALFWORD IMMEDIATE . . 7-29

COMPARE LOGICAL 7-29
COMPARE LOGICAL CHARACTERS

UNDER MASK 7-30
COMPARE LOGICAL LONG 7-30
COMPARE LOGICAL LONG EXTENDED 7-32
COMPARE LOGICAL STRING 7-34
COMPARE UNTIL SUBSTRING EQUAL . 7-36
CONVERT TO BINARY 7-39
CONVERT TO DECIMAL 7-39
CONVERT UNICODE TO UTF-8 7-40
CONVERT UTF-8 TO UNICODE 7-42
COPY ACCESS 7-45
DIVIDE 7-45
EXCLUSIVEOR 7-45
EXECUTE 7-46
EXTRACT ACCESS 7-47
INSERT CHARACTER 7-47

INSERT CHARACTERS UNDER MASK . 7-47

INSERT PROGRAM MASK 7-48
LOAD . . oo 7-48
LOAD ACCESS MULTIPLE 7-49
LOAD ADDRESS 7-49
LOAD ADDRESS EXTENDED 7-49
LOADAND TEST 7-50
LOAD COMPLEMENT 7-50
LOAD HALFWORD 7-51
LOAD HALFWORD IMMEDIATE 7-51
LOAD MULTIPLE 7-51
LOAD NEGATIVE 7-51
LOAD POSITIVE 7-52
MONITOR CALL 7-52
MOVE, 7-53
MOVE INVERSE 7-53
MOVE LONG 7-54
MOVE LONG EXTENDED 7-57
MOVE NUMERICS 7-60
MOVE PAGE (Facility 1) 7-60
MOVE STRING 7-62
MOVE WITH OFFSET 7-63
MOVE ZONES 7-64
MULTIPLY . ..o 7-65
MULTIPLY HALFWORD 7-65
MULTIPLY HALFWORD IMMEDIATE . . . 7-65
MULTIPLY SINGLE 7-66
OR . oo 7-66
PACK . .. i 7-67
PERFORM LOCKED OPERATION 7-68
SEARCHSTRING 7-79
SETACCESS 7-81

Contents Vil

SET PROGRAM MASK
SHIFT LEFT DOUBLE

SHIFT LEFT DOUBLE LOGICAL
SHIFT LEFT SINGLE
SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT DOUBLE
SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT SINGLE
SHIFT RIGHT SINGLE LOGICAL
STORE
STORE ACCESS MULTIPLE
STORE CHARACTER
STORE CHARACTERS UNDER MASK
STORE CLOCK
STORE CLOCK EXTENDED
STORE HALFWORD
STORE MULTIPLE

SUBTRACT
SUBTRACT HALFWORD
SUBTRACT LOGICAL
SUPERVISOR CALL

TEST AND SET
TEST UNDER MASK
TEST UNDER MASK HIGH
TEST UNDER MASK LOW
TRANSLATE
TRANSLATE AND TEST
TRANSLATE EXTENDED
UNPACK
UPDATE TREE

Chapter 8. Decimal Instructions
Decimal-Number Formats
Zoned Format

Packed Format
Decimal Codes
Decimal Operations
Decimal-Arithmetic Instructions
Editing Instructions
Execution of Decimal Instructions
Other Instructions for Decimal Operands
Decimal-Operand Data Exception
Instructions
ADD DECIMAL
COMPARE DECIMAL
DIVIDE DECIMAL
EDIT
EDIT AND MARK
MULTIPLY DECIMAL
SHIFT AND ROUND DECIMAL
SUBTRACT DECIMAL
ZERO AND ADD

viii ESA/390 Principles of Operation

Chapter 9. Floating-Point Overview and
Support Instructions
Registers And Controls

Floating-Point Registers

Additional Floating-Point (AFP)
Registers
Valid Floating-Point-Register
Designations

Floating-Point-Control (FPC) Register . . .

AFP-Register-Control Bit
Explicit Rounding Methods
Summary of Rounding Action
Comparison of BFP and HFP Number
Representations

BFP and HFP Number Ranges
Equivalent BFP and HFP Number
Representations
Instructions
CONVERT BFP TO HFP
CONVERT HFP TO BFP
LOAD
LOAD ZERO
STORE

Summary of All Floating-Point Instructions . .

Chapter 10. Control Instructions
BRANCH AND SET AUTHORITY
BRANCH AND STACK
BRANCH IN SUBSPACE GROUP
DIAGNOSE
EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASN
EXTRACT STACKED REGISTERS
EXTRACT STACKED STATE
INSERT ADDRESS SPACE CONTROL
INSERT PSW KEY
INSERT STORAGE KEY EXTENDED
INSERT VIRTUAL STORAGE KEY
INVALIDATE PAGE TABLE ENTRY . . .
LOAD ADDRESS SPACE

PARAMETERS
LOAD CONTROL
LOAD PSW
LOAD REAL ADDRESS
LOAD USING REAL ADDRESS
MODIFY STACKED STATE
MOVE PAGE (Facility 2)
MOVE TO PRIMARY
MOVE TO SECONDARY
MOVE WITH DESTINATION KEY
MOVE WITH KEY
MOVE WITH SOURCE KEY
PROGRAM CALL
PROGRAM CALL FAST

PROGRAM RETURN 10-63 Check-Stop State 11-10

PROGRAM TRANSFER 10-66 System Check Stop 11-11
PURGEALB 10-72 Machine-Check Interruption 11-11
PURGETLB 10-72 Exigent Conditions 11-11
RESET REFERENCE BIT EXTENDED . 10-72 Repressible Conditions 11-12
RESUME PROGRAM 10-73 Interruption Action 11-12
SET ADDRESS SPACE CONTROL . . . 10-75 Point of Interruption 11-14
SET ADDRESS SPACE CONTROL Machine-Check-Interruption Code 11-15
FAST 10-75 Subclass L 11-16
SET CLOCK 10-76 System Damage 11-16
SET CLOCK COMPARATOR 10-77 Instruction-Processing Damage 11-17
SET CLOCK PROGRAMMABLE FIELD 10-78 System Recovery 11-17
SETCPUTIMER, ... 10-78 Timing-Facility Damage 11-17
SETPREFIX 10-78 External Damage 11-17
SET PSW KEY FROM ADDRESS 10-79 Vector-Facility Failure 11-18
SET SECONDARY ASN 10-79 Degradation 11-18
SET STORAGE KEY EXTENDED 10-83 Warning 11-18
SET SYSTEM MASK 10-83 Channel Report Pending 11-18
SIGNAL PROCESSOR 10-83 Service-Processor Damage 11-18
STORE CLOCK COMPARATOR 10-85 Channel-Subsystem Damage 11-19
STORE CONTROL 10-85 Subclass Modifiers 11-19
STORE CPU ADDRESS 10-85 Vector-Facility Source 11-19
STORECPUID 10-86 BackedUp 11-19
STORECPUTIMER 10-86 Delayed Access Exception 11-19
STORE PREFIX 10-87 Ancillary Report 11-19
STORE SYSTEM INFORMATION 10-87 Synchronous
STORE THEN AND SYSTEM MASK . . 10-96 Machine-Check-Interruption Conditions 11-19
STORE THEN OR SYSTEM MASK . . . 10-97 Processing Backup 11-19
STORE USING REAL ADDRESS 10-97 Processing Damage 11-20
TESTACCESS 10-98 Storage Errors 11-20
TESTBLOCK 10-101 Storage Error Uncorrected 11-20
TEST PROTECTION 10-103 Storage Error Corrected 11-21
TRACE 10-106 Storage-Key Error Uncorrected 11-21
TRAP 10-106 Storage Degradation 11-21
Indirect Storage Error 11-21
Chapter 11. Machine-Check Handling . . . 11-1 Machine-Check Interruption-Code
Machine-Check Detection 11-2 Validity Bits 11-22
Correction of Machine Malfunctions 11-2 PSW-MWP Validity 11-22
Error Checking and Correction 11-2 PSW Mask and Key Validity 11-22
CPURetry 11-2 PSW Program-Mask and
Effects of CPURetry 11-3 Condition-Code Validity 11-22
Checkpoint Synchronization 11-3 PSW-Instruction-Address Validity . . . 11-22
Handling of Machine Checks during Failing-Storage-Address Validity . . . 11-22
Checkpoint Synchronization 11-3 External-Damage-Code Validity 11-22
Checkpoint-Synchronization Operations 11-3 Floating-Point-Register Validity 11-22
Checkpoint-Synchronization Action . . . 11-4 General-Register Validity 11-22
Channel-Subsystem Recovery 11-4 Control-Register Validity 11-22
Unit Deletion 114 Storage Logical Validity 11-23
Handling of Machine Checks 11-5 Access-Register Validity 11-23
Validation 11-5 Extended-Floating-Point-Register
Invalid CBC in Storage 11-6 Validity 11-23
Programmed Validation of Storage . . . 11-7 CPU-Timer Validity 11-23
Invalid CBC in Storage Keys 11-7 Clock-Comparator Validity 11-23
Invalid CBC in Registers 11-9

Contents X

Machine-Check Extended Interruption

Information 11-23
Register Save Areas 11-23
Machine-Check Extended Save Area 11-24
External-Damage Code 11-24

Failing-Storage Address 11-24

Handling of Machine-Check Conditions 11-25
Floating Interruption Conditions 11-25
Floating Machine-Check-Interruption
Conditions 11-25
Floating I/O Interruptions 11-25
Machine-Check Masking 11-25
Channel-Report-Pending Subclass
Mask 11-26
Recovery Subclass Mask 11-26
Degradation Subclass Mask 11-26
External-Damage Subclass Mask . . . 11-26
Warning Subclass Mask 11-26
Machine-Check Logout 11-26
Summary of Machine-Check Masking 11-26
Chapter 12. Operator Facilites 12-1
Manual Operation 12-1
Basic Operator Facilities 12-1
Address-Compare Controls 12-1
Alter-and-Display Controls 12-2
Architectural-Mode Indicator 12-2
Architectural-Mode-Selection Controls . . . 12-2
Check-Stop Indicator 12-2
IML Controls 12-2
InterruptKey, 12-3
Load Indicator 12-3
Load-ClearKey 12-3
Load-Normal Key 12-3
Load-Unit-Address Controls 12-3
Manual Indicator 12-3
Power Controls 12-3
Rate Control 12-3
RestartKey 12-4
StartKey 12-4
StopKey 12-4
Store-Status Key 12-4
System-Reset-Clear Key 12-4
System-Reset-Normal Key 12-5
Test Indicator 12-5
TOD-Clock Control 12-5
Wait Indicator 12-5
Multiprocessing Configurations 12-5
Chapter 13. I/O Overview 13-1
Input/Qutput (1/10) 13-1
The Channel Subsystem 13-1
Subchannels 13-2
Attachment of Input/Output Devices 13-2

X ESA/390 Principles of Operation

Channel Paths
Control Units
I/O Devices
I/O Addressing
Channel-Path Identifier
Subchannel Number
Device Number
Device ldentifier
Execution of I/O Operations
Start-Function Initiation
Path Management
Channel-Program Execution
Conclusion of I/O Operations
I/O Interruptions

Chapter 14. 1/O Instructions
I/O-Instruction Formats
I/O-Instruction Execution
Serialization
Operand Access
Condition Code
Program Exceptions
Instructions
CLEAR SUBCHANNEL
HALT SUBCHANNEL
MODIFY SUBCHANNEL
RESET CHANNEL PATH
RESUME SUBCHANNEL
SET ADDRESS LIMIT
SET CHANNEL MONITOR
START SUBCHANNEL
STORE CHANNEL PATH STATUS
STORE CHANNEL REPORT WORD
STORE SUBCHANNEL
TEST PENDING INTERRUPTION
TEST SUBCHANNEL

Chapter 15. Basic I/0O Functions
Control of Basic I/0 Functions
Subchannel-Information Block
Path-Management-Control Word .
Subchannel-Status Word
Model-Dependent Area
Summary of Modifiable Fields
Channel-Path Allegiance
Working Allegiance
Active Allegiance
Dedicated Allegiance
Channel-Path Availability
Control-Unit Type
Clear Function
Clear-Function Path Management
Clear-Function Subchannel Modification

Clear-Function Signaling and

Completion 15-14
Halt Function 15-14
Halt-Function Path Management 15-15
Halt-Function Signaling and Completion 15-15
Start Function and Resume Function 15-17
Start-Function and Resume-Function
Path Management 15-18
Execution of I/O Operations 15-20
Blocking of Data 15-21
Operation-Request Block 15-21
Channel-Command Word 15-23
Command Code 15-25
Designation of Storage Area 15-25
Chaining 15-27
Data Chaining 15-29
Command Chaining 15-30
Skipping 15-31
Program-Controlled Interruption 15-31
CCW Indirect Data Addressing 15-32
Suspension of Channel-Program
Execution 15-34
Commandsand Flags 15-36
Branching in Channel Programs 15-36
Transfer in Channel 15-37
Command Retry 15-37
Concluding I/0 Operations during Initiation 15-37
Immediate Conclusion of I/O Operations . . 15-38
Concluding 1/0 Operations During Data
Transfer 15-39

Channel-Path-Reset Function 15-40
Channel-Path-Reset-Function Signaling . 15-40
Channel-Path-Reset

Function-Completion Signaling 15-41
Chapter 16. /O Interruptions 16-1
Interruption Conditions 16-1

Intermediate Interruption Condition 16-4
Primary Interruption Condition 16-4
Secondary Interruption Condition 16-4
Alert Interruption Condition 16-4
Priority of Interruptions 16-4
Interruption Action 16-5
Interruption-Response Block 16-6
Subchannel-Status Word 16-6
SubchannelKey 16-8
Suspend Control (S) 16-8
Extended-Status-Word Format (L) . . . 16-8
Deferred Condition Code (CC) 16-8
Format (F) 16-10
Prefetch (P) 16-10

Initial-Status-Interruption Control (I) . . 16-11
Address-Limit-Checking Control (A) . 16-11
Suppress-Suspended Interruption (U) 16-11

Subchannel-Control Field 16-11
Zero Condition Code (2) 16-11
Extended Control (E) 16-11
Path Not Operational (N) 16-12
Function Control (FC) 16-12
Activity Control (AC) 16-13
Status Control (SC) 16-16

CCW-Address Field 16-19

Device-Status Field 16-24

Subchannel-Status Field 16-24
Program-Controlled Interruption 16-24
Incorrect Length 16-24
Program Check 16-25
Protection Check 16-26
Channel-Data Check 16-27
Channel-Control Check 16-27
Interface-Control Check 16-28
Chaining Check 16-29

CountField 16-29

Extended-Status Word 16-32

Extended-Status Format0 16-32
Subchannel Logout 16-32
Extended-Report Word 16-36
Failing-Storage Address 16-37

Extended-Status Format1 16-37

Extended-Status Format2 16-38

Extended-Status Format3 16-38

Extended-Control Word 16-39
Chapter 17. 1/0O Support Functions Lo 17
Channel-Subsystem Monitoring 17-1

Channel-Subsystem Timing 17-1
Channel-Subsystem Timer 17-2

Measurement-Block Update 17-2
Measurement Block 17-3
Measurement-Block Origin 17-5
Measurement-Block Key 17-5
Measurement-Block Index 17-5
Measurement-Block-Update Mode . . . 17-5
Measurement-Block-Update Enable . . 17-6
Control-Unit-Queuing Measurement . . 17-6
Time-Interval-Measurement Accuracy . 17-6

Device-Connect-Time Measurement 17-6
Device-Connect-Time-Measurement

Mode 17-7
Device-Connect-Time-Measurement

Enable 17-7

Signalsand Resets 17-7

Signals 17-7
Halt Signal 17-8
Clear Signal 17-8
ResetSignal 17-8

Resets 17-8
Channel-Path Reset 17-9

Contents Xi

I/O-System Reset 17-9

Externally Initiated Functions 17-13
Initial Program Loading 17-13
Reconfiguration of the I/O System 17-15

Status Verification 17-15

Address-Limit Checking 17-15

Configuration Alert 17-16

Incorrect-Length-Indication Suppression 17-16

Concurrent Sense 17-16

Channel-Subsystem Recovery 17-17
Channel Report 17-17
Channel-Report Word 17-19

Chapter 18. Hexadecimal-Floating-Point

Instructions 18-1

HFP Arithmetic 18-1
HFP Number Representation 18-1
Normalization 18-3
HFP Data Format 18-3

Instructions 18-4
ADD NORMALIZED 18-8
ADD UNNORMALIZED 18-9
COMPARE 18-10
CONVERT FROM FIXED 18-11
CONVERTTOFIXED 18-11
DIVIDE 18-12
HALVE 18-13
LOAD AND TEST 18-14
LOAD COMPLEMENT 18-14
LOAD FP INTEGER 18-15
LOAD LENGTHENED 18-15
LOAD NEGATIVE 18-16
LOAD POSITIVE 18-17
LOAD ROUNDED 18-17
MULTIPLY 18-18
SQUARE ROOT 18-20
SUBTRACT NORMALIZED 18-21
SUBTRACT UNNORMALIZED 18-22

Chapter 19. Binary-Floating-Point

Instructions 19-1

Binary-Floating-Point Facility 19-1

Floating-Point-Control (FPC) Register . . . 19-2
IEEE Masks and Flags 19-3
FPCDXCByte 19-3
Operations on the FPC Register ... 193

BFP Arithmetic 19-4

BFP Data Formats 19-4
BFP Short Format 19-4
BFP Long Format 19-4
BFP Extended Format 19-4
Biased Exponent 194
Significand 19-4
Values of Nonzero Numbers 19-4

Xii ESA/390 Principles of Operation

Classesof BFP Data 19-5
ZEeros 19-6
Denormalized Numbers 19-6
Normalized Numbers 19-6
Infinites 19-6
Signaling and Quiet NaNs 19-6

BFP-Format Conversion 19-7

BFP Rounding 19-7
Rounding Mode 19-7

Normalization and Denormalization 19-8

BFP Comparison 19-8

Condition Codes for BFP Instructions 19-9
Remainder 19-9
IEEE Exception Conditions 19-10
IEEE Invalid Operation 19-10
IEEE Division-By-Zero 19-11
IEEE Overflow 19-11
IEEE Underflow 19-12
IEEE Inexact 19-12
Result Figures 19-13
Data-Exception Codes (DXC) and
Abbreviations 19-14
Instructions 19-15
ADD 19-18
COMPARE 19-23
COMPARE AND SIGNAL 19-24
CONVERT FROM FIXED 19-26
CONVERTTOFIXED 19-27
DIVIDE 19-29
DIVIDE TO INTEGER 19-30
EXTRACTFPC 19-35
LOAD AND TEST 19-36
LOAD COMPLEMENT 19-36
LOAD FP INTEGER 19-37
LOADFPC 19-38
LOAD LENGTHENED 19-39
LOAD NEGATIVE 19-39
LOAD POSITIVE 19-40
LOAD ROUNDED 19-40
MULTIPLY 19-41
MULTIPLY ANDADD 19-43
MULTIPLY AND SUBTRACT 19-43
SETFPC 19-45
SET ROUNDING MODE 19-45
SQUARE ROOT 19-46
STOREFPC 19-46
SUBTRACT 19-46
TEST DATACLASS 19-47
Appendix A. Number Representation and
Instruction-Use Examples A-1
Number Representation A-2
Binary Integers A-2
Signed Binary Integers A-2

Unsigned Binary Integers
Decimal Integers
Hexadecimal-Floating-Point Numbers
Conversion Example

Instruction-Use Examples
Machine Format
Assembler-Language Format

Addressing Mode in Examples

General Instructions
ADD HALFWORD (AH)
AND (N, NC, NI, NR)

NI Example
Linkage Instructions (BAL, BALR, BAS,

BASR, BASSM, BSM)

Other BALR and BASR Examples
BRANCH AND STACK (BAKR)

BAKR Example 1

BAKR Example 2

BAKR Example 3
BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR)
BRANCH ON INDEX HIGH (BXH)

BXH Example 1

BXH Example 2
BRANCH ON INDEX LOW OR EQUAL

(BXLE)

BXLE Example 1

BXLE Example 2
COMPARE AND FORM CODEWORD

(CFC)
COMPARE HALFWORD (CH)
COMPARE LOGICAL (CL, CLC, CLI,

CLR)

CLC Example

CLI Example

CLR Example
COMPARE LOGICAL CHARACTERS

UNDER MASK (CLM)
COMPARE LOGICAL LONG (CLCL)
COMPARE LOGICAL STRING (CLST)
CONVERT TO BINARY (CVB)
CONVERT TO DECIMAL (CVD)
DIVIDE (D, DR)
EXCLUSIVE OR (X, XC, XI, XR)

XC Example

XI Example
EXECUTE (EX)
INSERT CHARACTERS UNDER MASK

(ICM)
LOAD (L, LR)
LOAD ADDRESS (LA)
LOAD HALFWORD (LH)
MOVE (MVC, MVI)

MVC Example

MVI Example
MOVE INVERSE (MVCIN)
MOVE LONG (MVCL)
MOVE NUMERICS (MVN)
MOVE STRING (MVST)
MOVE WITH OFFSET (MVO)
MOVE ZONES (MVZ)
MULTIPLY (M, MR)
MULTIPLY HALFWORD (MH)
OR (O, OC, 0Ol, OR)

Ol Example
PACK (PACK)
SEARCH STRING (SRST)

SRST Example 1

SRST Example 2
SHIFT LEFT DOUBLE (SLDA)
SHIFT LEFT SINGLE (SLA)
STORE CHARACTERS UNDER MASK

(STCM)
STORE MULTIPLE (STM)
TEST UNDER MASK (TM)
TRANSLATE (TR)
TRANSLATE AND TEST (TRT)
UNPACK (UNPK)
UPDATE TREE (UPT)

Decimal Instructions
ADD DECIMAL (AP)
COMPARE DECIMAL (CP)
DIVIDE DECIMAL (DP)
EDIT (ED)
EDIT AND MARK (EDMK)
MULTIPLY DECIMAL (MP)
SHIFT AND ROUND DECIMAL (SRP)

Decimal Left Shift

Decimal Right Shift

Decimal Right Shift and Round

Multiplying by a Variable Power of 10
ZERO AND ADD (ZAP)

Hexadecimal-Floating-Point Instructions
ADD NORMALIZED (AD, ADR, AE, AER,

AXR)
ADD UNNORMALIZED (AU, AUR, AW,

AWR)
COMPARE (CD, CDR, CE, CER)
DIVIDE (DD, DDR, DE, DER)
HALVE (HDR, HER)
MULTIPLY (MD, MDR, MDE, MDER,

MXD, MXDR, MXR)
Hexadecimal-Floating-Point-Number

Conversion

Fixed Point to Hexadecimal Floating

Point
Hexadecimal Floating Point to Fixed
Point

Contents

Xiii

Multiprogramming and Multiprocessing

Exampleso A-42
Example of a Program Failure Using OR
Immediate, A-42
Conditional Swapping Instructions (CS,

CDS) A-43
Settinga Single Bit A-43
Updating Counters A-44

Bypassing Post and Wait A-44
Bypass Post Routine A-45
Bypass Wait Routine A-45

Lock/Unlock A-45
Lock/Unlock with LIFO Queuing for

Contentions A-45
Lock/Unlock with FIFO Queuing for

Contentions A-46

Free-Pool Manipulation A-48

PERFORM LOCKED OPERATION (PLO) A-49

Sorting Instructions A-51
Tree Format A-51
Example of Use of Sort Instructions . . . A-52

Appendix B. Lists of Instructions B-1

Appendix C. Condition-Code Settings .. C1

Appendix D. Comparison between

ESA/370 and ESA/390 D-1

New Facilities in ESA/390 D-1
Access-List-Controlled Protection D-1
Additional Floating-Point D-1
Branch and Set Authority D-2
Called-Space Identification D-2

Checksum D-2

Compare and Move Extended D-2
Concurrent Sense D-2
Extended TOD Clock D-2
Extended Translation D-2
Immediate and Relative Instruction D-3
Move-Page Facility 2 D-3
PER2 D-3
Perform Locked Operation D-3
Program Call Fast D-4
Resume Program D-4

Set Address Space Control Fast D-4

Square Root D-4
Storage-Protection Override D-4
Store System Information D-4
String Instructiono D-5
Subspace Group D-5
Suppression on Protection D-5
TOD-Clock-Control Override D-6
Trap D-6
Comparison of Facilites D-6

Xiv ESA/390 Principles of Operation

Appendix E. Comparison between 370-XA
and ESA/370
New Facilities in ESA/370
Access Registers L.
Compare until Substring Equal
Home Address Space
Linkage Stack
Load and Store Using Real Address
Move Page Facility 1
Move with Source or Destination Key . . .
Private Space
Comparison of Facilities
Summary of Changes
New Instructions Provided
Comparison of PSW Formats
New Control-Register Assignments
New Assigned Storage Locations
New Exceptions
Change to Secondary-Space Mode
Changes to ASN-Second-Table Entry and
ASN Translation
Changes to Entry-Table Entry and
PC-Number Translation
Changes to PROGRAM CALL
Changes to SET ADDRESS SPACE
CONTROL
Effects in New Translation Modes
Effects on Interlocks for Virtual-Storage
References
Effect on INSERT ADDRESS SPACE
CONTROL
Effect on LOAD REAL ADDRESS
Effect on TEST PENDING
INTERRUPTION
Effect on TEST PROTECTION

Appendix F. Comparison between
System/370 and 370-XA
New Facilities in 370-XA
Bimodal Addressing

31-Bit Logical Addressing
31-Bit Real and Absolute Addressing
Page Protection
Tracing
Incorrect-Length-Indication Suppression
Status Verification
Comparison of Facilities
Summary of Changes
Changes in Instructions Provided
Input/Output Comparison
Comparison of PSW Formats
Changes in Control-Register Assignments
Changes in Assigned Storage Locations

Changes to SIGNAL PROCESSOR
Machine-Check Changes
Changes to Addressing Wraparound
Changes to LOAD REAL ADDRESS
Changes to 31-Bit Real Operand
Addresses

F-6
F-7
F-7
F-7

F-8

Appendix G. Table of Powers of 2

Appendix H. Hexadecimal Tables

Appendix I. EBCDIC and Other Codes

Contents

XV

XVi ESA/390 Principles of Operation

Notices

References in this publication to IBM products,
programs or services do not imply that IBM
intends to make these available in all countries in
which IBM operates. Any reference to an IBM
product, program, or service is not intended to
state or imply that only IBM's product, program, or
service may be used. Any functionally equivalent
product, program, or service that does not infringe
any of IBM's intellectual property rights may be
used instead of the IBM product, program, or
service. Evaluation and verification of operation in
conjunction with other products, except those
expressly designated by IBM, is the user's respon-
sibility.

IBM may have patents or pending patent applica-
tions covering subject matter in this document.
The furnishing of this document does not give you
any license to these patents. You can send
license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus
Avenue, Thornwood, NY, 10594 USA.

Trademarks

The following terms, denoted by an asterisk (*) at
the first or most prominent occurrence in this pub-
lication, are trademarks of the International Busi-
ness Machines Corporation in the United States or
other countries:

AIX/ESA

BookMaster

CICs

DB2

Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
Enterprise Systems Connection Architecture
ESA/370

ESA/390

ESCON

MVS/ESA

Processor Resource/Systems Manager
PR/SM

Sysplex Timer

System/370

VM/ESA

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999 XVil

XViii ESA/390 Principles of Operation

Preface

This publication provides, for reference purposes,
a detailed Enterprise Systems Architecture/390*
(ESA/390*) description.

The publication applies only to systems operating
as defined by ESA/390. For systems operating in
accordance with the System/370* or System/370
extended-architecture (370-XA) definitions, the
IBM System/370 Principles of Operation,
GA22-7000, or the IBM 370-XA Principles of
Operation, SA22-7085, should be consulted. For
systems operating in accordance with the Enter-
prise Systems Architecture/370* (ESA/370*) defi-
nition, the IBM ESA/370 Principles of Operation,
SA22-7200, should be consulted.

The publication describes each function at the
level of detail needed to prepare an assembler-
language program that relies on that function. It
does not, however, describe the notation and con-
ventions that must be employed in preparing such
a program, for which the user must instead refer
to the appropriate assembler-language publication.

The information in this publication is provided prin-
cipally for use by assembler-language program-
mers, although anyone concerned with the
functional details of ESA/390 will find it useful.

This publication is written as a reference and
should not be considered an introduction or a text-
book. It assumes the user has a basic knowledge
of data-processing systems.

All facilities discussed in this publication are not
necessarily available on every model. Further-
more, in some instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain capabilities may
be described or implied that are not offered on
any model. Examples of such capabilities are the
use of a 16-bit field in the subsystem-identification
word to identify the channel subsystem, the size of
the CPU address, and the number of CPUs
sharing main storage. The allowance for this type
of extendibility should not be construed as
implying any intention by IBM to provide such

capabilities. For information about the character-
istics and availability of facilities on a specific
model, see the functional characteristics publica-
tion for that model.

Largely because this publication is arranged for
reference, certain words and phrases appear, of
necessity, earlier in the publication than the prin-
cipal discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index, which indi-
cates the location of the key description.

The information presented in this publication is
grouped in 19 chapters and several appendixes:

Chapter 1, Introduction, highlights the major facili-
ties of the ESA/390 architecture.

Chapter 2, Organization, describes the major
groupings within the system—main storage,
expanded storage, the central processing unit
(CPU), the external time reference (ETR), and
input/output—with some attention given to the
composition and characteristics of those
groupings.

Chapter 3, Storage, explains the information
formats, the addressing of storage, and the facili-
ties for storage protection. It also deals with
dynamic address translation (DAT), which,
coupled with special programming support, makes
the use of a virtual storage possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally
initiated operations, for debugging, and for timing.
It deals specifically with CPU states, control
modes, the program-status word (PSW), control
registers, tracing, program-event recording, timing
facilities, resets, store status, and initial program
loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use
of the program-status word (PSW), of branching,

Enterprise Systems Architecture/390, ESA/390, Enterprise Systems Architecture/370, ESA/370, and System/370 are trademarks of

the International Business Machines Corporation.

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999 Xix

and of interruptions. It contains the principal
description of the advanced address-space facili-
ties that were introduced in ESA/370. It also
details the aspects of program execution on one
CPU as observed by other CPUs and by channel
programs.

Chapter 6, Interruptions, details the mechanism
that permits the CPU to change its state as a
result of conditions external to the system, within
the system, or within the CPU itself. Six classes
of interruptions are identified and described:
machine-check interruptions, program inter-
ruptions, supervisor-call interruptions, external
interruptions, input/output interruptions, and restart
interruptions.

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data
formats and of all unprivileged instructions except
the decimal and floating-point instructions.

Chapter 8, Decimal Instructions, describes in
detail decimal data formats and the decimal
instructions.

Chapter 9, Floating-Point Overview and Support
Instructions, includes an introduction to the
floating-point operations, detailed descriptions of
those instructions common to both hexadecimal-
floating-point and binary-floating-point operations,
and summaries of all floating-point instructions.

Chapter 10, Control Instructions, contains detailed
descriptions of all of the semiprivileged and privi-
leged instructions except for the 1/O instructions.

Chapter 11, Machine-Check Handling, describes
the mechanism for detecting, correcting, and
reporting machine malfunctions.

Chapter 12, Operator Facilities, describes the
basic manual functions and controls available for
operating and controlling the system.

Chapters 13-17 of this publication provide a
detailed definition of the functions performed by
the channel subsystem and the logical interface
between the CPU and the channel subsystem.

Chapter 13, 1/0O Overview, provides a brief

description of the basic components and operation
of the channel subsystem.

XX ESA/390 Principles of Operation

Chapter 14, I/O Instructions, contains the

description of the 1/O instructions.

Chapter 15, Basic I/0O Functions, describes the
basic 1/0 functions performed by the channel sub-
system, including the initiation, control, and con-
clusion of 1/0O operations.

Chapter 16, I/O Interruptions, covers /O inter-
ruptions and interruption conditions.

Chapter 17, I/0O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

Chapter 18, Hexadecimal-Floating-Point
Instructions, contains detailed descriptions of the
hexadecimal-floating-point (HFP) data formats and
the HFP instructions.

Chapter 19, Binary-Floating-Point Instructions,
contains detailed descriptions of the binary-
floating-point (BFP) data formats and the BFP
instructions.

The Appendixes include:

¢ [nformation about number representation

¢ [nstruction-use examples

e Lists of the instructions arranged in several
sequences

¢ A summary of the condition-code settings

e A summary of the differences between
ESA/370 and ESA/390

e« A summary of the differences between
370-XA and ESA/370

e A summary of the differences between
System/370 and 370-XA

¢ A table of the powers of 2

e Tabular information helpful in dealing with
hexadecimal numbers

¢ A table of EBCDIC and other codes.

Certain information about commands that is in
Chapters 15 and 16 of the ESA/370 Principles of
Operation is not in this publication; instead it is in
the publication IBM Enterprise Systems
Architecture/390 Common I/O-Device Commands
and Self Description, SA22-7204.

Size and Number Notation

In this publication, the letters K, M, G, and T
denote the multipliers 210, 220 2306 and 249,
respectively. Although the letters are borrowed
from the decimal system and stand for kilo (103),
mega (10¢), giga (10°%), and tera (10%2), they do
not have the decimal meaning but instead repre-
sent the power of 2 closest to the corresponding
power of 10. Their meaning in this publication is
as follows:

Symbol Value

K (kilo) 1,024 = 210
M (mega) 1,048,576 = 220
G (giga) 1,073,741,824 = 23¢
T (tera) | 1,099,511,627,776 = 240

The following are some examples of the use of K,
M, G, and T:

2,048 is expressed as 2K.

4,096 is expressed as 4K.

65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.

231 js expressed as 2G.

242 js expressed as 4T.

When the words “thousand” and “million” are
used, no special power-of-2 meaning is assigned
to them.

All numbers in this publication are in decimal
unless they are explicitly noted as being in binary
or hexadecimal (hex).

Bytes, Characters, and Codes

Although the System/360 architecture was ori-
ginally designed to support the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC), the
instructions and data formats of the architecture
are for the most part independent of the external
code which is to be processed by the machine.
For most instructions, all 256 possible combina-
tions of bit patterns for a particular byte can be
processed, independent of the character which the
bit pattern is intended to represent. For
instructions which use the zoned format, and for

those few instructions which are dependent on a
particular external code, the instruction TRANS-
LATE may be used to convert data from one code
to another code. Thus, a machine operating in
accordance with ESA/390 can process EBCDIC,
ASCII, or any other code which can be repres-
ented in eight or fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by
considering the bits of the byte to represent a
binary code. Thus, when a byte is said to contain
a zero, the value 00000000 binary, or 00 hex, is
meant, and not the value for an EBCDIC character
“0,” which would be FO hex.

Other Publications

The parallel-I/O interface is described in the publi-
cation IBM System/360 and System/370 I/O Inter-
face Channel to Control Unit Original Equipment
Manufacturers' Information, GA22-6974.

The parallel-l/O channel-to-channel adapter is
described in the publication IBM Enterprise
Systems Architecture/390 Channel-to-Channel
Adapter for the System/360 and System/370 1/O
Interface, SA22-7091.

The Enterprise Systems Connection Architecture*
(ESCON*) 1/O interface, referred to in this publi-
cation as the serial-1/O interface, is described in

the publication IBM Enterprise Systems
Architecture/390 ESCON /0 Interface,
SA22-7202.

The channel-to-channel adapter for the serial-1/O
interface is described in the publication /IBM Enter-
prise Systems Architecture/390 ESCON Channel-
to-Channel-Adapter, SA22-7203.

The commands, status, and sense data that are
common to all I/O devices that comply with
ESA/390 are described in the publication /BM
Enterprise Systems Architecture/390 Common
I/O-Device Commands and Self Description,
SA22-7204.

Vector operations are described in the publication
IBM Enterprise Systems Architecture/390 Vector
Operations, SA22-7207.

Enterprise Systems Connection Architecture and ESCON are trademarks of the International Business Machines Corporation.

Preface XXi

The compression facility is described in the publi-
cation IBM Enterprise Systems Architecture/390
Data Compression, SA22-7208.

The interpretive-execution facility is described in
the publication IBM 370-XA Interpretive Execution,
SA22-7095.

The mathematical assists are described in the
publication IBM System/370 Mathematical Assists,
SA22-7094, which describes the instructions
ARCTANGENT, COMMON LOGARITHM,
COSINE, EXPONENTIAL, MULTIPLY AND ADD,
NATURAL LOGARITHM, RAISE TO POWER,
SINE, and SQUARE ROOT.

; Summary of Changes in Seventh
; Edition

| The current, seventh edition of this publication
| differs from the previous edition principally by con-
| taining the definitions of the extended-TOD-clock,
| TOD-clock-control-override, extended-translation,
| and store-system-information facilities. The
| seventh edition contains minor clarifications and
| corrections and also the following significant
| changes relative to the previous edition:

¢ |n Chapter 4, “Control”:

— The ETR subclass mask, bit 27 of control
register 0, and the
TOD-clock-control-override control, bit 10
of control register 14, are added.

— An extension to the TOD clock, and the
TOD programmable register, are added.

¢ In Chapter 6, “Interruptions”:
— The ETR external interruption is added.

/
/
/
/
/
/
/
/
/
/ — The TOD-clock-sync-check external inter-
/ ruption is affected by the
/ extended-TOD-clock facility.

| ¢ In Chapter 7, “General Instructions,” the
/ CONVERT UNICODE TO UTF-8, CONVERT
/ UTF-8 TO UNICODE, STORE CLOCK
/ EXTENDED, and TRANSLATE EXTENDED
/ instructions are added.

/

/

/

/

¢ In Chapter 10, “Control Instructions,” the SET
CLOCK PROGRAMMABLE FIELD and
STORE SYSTEM INFORMATION instructions
are added.

XXii ESA/390 Principles of Operation

—_——— —

The above changes may affect other chapters
besides the ones listed. All technical changes to
the text or to an illustration are indicated by a ver-
tical line to the left of the change.

Summary of Changes in Sixth
Edition

The sixth edition of this publication differs from the
previous edition principally by containing the defi-
nitions of the basic floating-point, floating-point-
support, and hexadecimal-floating-point (HFP)
extension faciliies and the binary-floating-point
(BFP), program-call-fast, resume-program, and
trap facilities. The sixth edition contains minor
clarifications and corrections and also the fol-
lowing significant changes relative to the previous
edition:

e In Chapter 2, “Introduction,” 12 floating-point
registers and the floating-point-control register
are added.

¢ In Chapter 3, “Storage™

— In the section “Prefixing,” the term “prefix
area” is changed to mean the 4K-byte
area designated by the prefix instead of
real locations 0-4095. This change is con-
sistent with how the term has been used
in the definition of the SET PREFIX

instruction.
— Assigned storage locations for the
PCF-entry-table origin, data-exception

code, and machine-check and store-status
extended-save-area address are added.

¢ |n Chapter 4, “Control”:

— Bits 22 and 23 of the PSW are renamed
the HFP-exponent-underflow mask and
the HFP-significance mask, respectively.

— The AFP-register control and extended-
save-area control are added in the control
registers.

— RESUME PROGRAM and TRAP cause
branch trace entries to be made.

— RESUME PROGRAM and TRAP cause
successful-branching PER events to occur
and a valid ATMID (addressing-and-
translation-mode identification) to be
stored.

— The use of an extended save area for
saving floating-point registers 0-15 and the
floating-point-control register by the store-
status operation is added.

— The store-extended-status-at-address
SIGNAL PROCESSOR order is added.

¢ |n Chapter 5, “Program Execution”:

— The RRF, RXE, and RXF instruction
formats are added.

— A trap-control-block address and
TRAP-enabled bit are added to the
dispatchable-unit control table.

¢ |n Chapter 6, “Interruptions”:

— The exception names “exponent overflow,”
“exponent underflow,” “significance,”
“floating-point divide,” and “square root”
are changed to “HFP exponent overflow,”
“HFP exponent underflow,” “HFP signif-
icance,” “HFP divide,” and “HFP square
root,” respectively.

— The reasons for recognizing a data excep-
tion are expanded to include reasons
related to the new floating-point facilities.
When a data exception is recognized for
an old reason related to decimal oper-
ands, it is called a decimal-operand data
exception. The detailed description of the
reasons for recognizing a decimal-operand
data exception is moved from Chapter 6
to Chapter 8, “Decimal Instructions.”

— When a program interruption for a data
exception occurs, a data-exception code
(DXC) may be stored at real location 147
and placed in the floating-point-control
(FPC) register to indicate the reason for
the exception.

— The instruction ending for a data excep-
tion may be suppression when previously
it was termination, depending on the
model. The ending may be completion in
new cases related to floating point.

— The figure “Priority of Access Exceptions”
has superscripts added indicating when an
exception is not applicable when not in the
access-register mode.

¢ In Chapter 7, “General Instructions,” additional

details are added to the definition of the
PERFORM LOCKED OPERATION instruction.

In Chapter 8, “Decimal Instructions,” the
reasons for recognizing a decimal-operand
data exception are described (the definition is
moved to here from Chapter 6).

Chapter 9, “Floating-Point Overview and
Support Instructions,” replaces the previous
Chapter 9, “Floating-Point Instructions.” The
new Chapter 9 introduces the BFP and HFP
operations, defines instructions that are
common to BFP and HFP or that convert
between BFP and HFP data formats, and
summarizes all floating-point instructions.
Other contents of the old Chapter 9 are
moved to Chapter 18, “Hexadecimal-Floating-
Point Instructions.”

In Chapter 10, “Control Instructions”:

— The PROGRAM CALL FAST, RESUME
PROGRAM, and TRAP instructions are
added.

— The method of description used in the
figure “Priority of Execution: PROGRAM
RETURN”" is changed. The technical
content of the figure is not changed.

In Chapter 11, “Machine-Check Handling,” the
storing of 16 floating-point registers and the
floating-point-control register in an extended
save area during a machine-check interruption
is added.

Chapter 18, “Hexadecimal-Floating-Point
Instructions,” is new. It contains definitions of
old and new instructions having operands in
the HFP data format. Also, alternate mne-
monics are assigned to some forms of the
LOAD ROUNDED and MULTIPLY
instructions.

Chapter 19, “Binary-Floating-Point (BFP)
Instructions,” is new. It contains definitions of
new instructions having operands in the BFP
data format.

In Appendix A, “Number Representation and
Instruction-Use Examples™

— The term “floating-point number” is
changed to “hexadecimal-floating-point
number.”

— An example of the use of the PERFORM
LOCKED OPERATION instruction is
added.

Preface XXili

The above changes may affect other chapters
besides the ones listed. All technical changes to
the text or to an illustration are indicated by a ver-
tical line to the left of the change, except that the
changes are not so indicated in Chapters 9, 18,
and 19 because the changes are so extensive
there.

Summary of Changes in Fifth
Edition

The fifth edition of this publication differs from the
previous edition principally by containing the defi-
nitions of the branch-and-set-authority facility and
the perform-locked-operation facility. The fifth
edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

e In Chapter 3, “Storage,” in the section “Han-
dling of Addresses,” the dispatchable-unit and
primary-space access-list origins and the
authority-table origin used by access-register
translation are unpredictably real or absolute
addresses instead of real addresses.

¢ In Chapter 4, “Control™:
— Leap second 21 is added.

— The effects of clear reset and power-on
reset on the locks used by PERFORM
LOCKED OPERATION are described.

¢ |n Chapter 5, “Program Execution”:

— The section “Subroutine Linkage without
the Linkage Stack” is enhanced to
describe a calling linkage made by the
PROGRAM TRANSFER instruction when
the purpose is to reduce authority. The
BRANCH AND SET AUTHORITY instruc-
tion then is introduced.

— The change described for Chapter 3
appears throughout the section “Access-
Register Translation.”

¢ In Chapter 6, “Interruptions,” the definitions of
the privileged-operation, protection, special-
operation, and specification exceptions are
added to or corrected.

e In Chapter 7, “General Instructions,” the
PERFORM LOCKED OPERATION instruction
is added.

XXIV ESA/390 Principles of Operation

e In Chapter 10, “Control Instructions,” the
BRANCH AND SET AUTHORITY instruction
is added.

The above changes may affect other chapters
besides the ones listed.

Summary of Changes in Fourth
Edition

The fourth edition of this publication differs from
the previous edition principally by containing the
definitions of the following facilities: called-space
identification, checksum, compare and move
extended, and immediate and relative instruction.
The fourth edition also contains additional informa-
tion about the PER-2 facility, and it describes the
ancillary-report bit in certain fields. The fourth
edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

¢ In Chapter 4, “Control™:

— Descriptions of an additional bit in the
PER code, the addressing-and-translation-
mode identification, and the PER STD
identification are added.

— Leap second 20 is added.

¢ |n Chapter 5, “Program Execution”:
— Instruction formats Rl and RSI are added.
— Relative branching is added.

— The section “Condition-Code Alternative to
Interruptibility” is added.

— The called-space identification in the
linkage-stack state entry formed by the
stacking PROGRAM CALL instruction is
added.

— It is clarified that a storage-operand fetch
reference for an instruction can precede
the execution of the instruction by an
unlimited amount of time.

— A programming note showing effects when
CPU serialization is or is not performed is
added.

¢ |n Chapter 7, “General Instructions”:
— The CHECKSUM instruction is added.

— The COMPARE LOGICAL LONG
EXTENDED and MOVE LONG

EXTENDED instructions of the compare-
and-move-extended facility are added.

— The instructions of the immediate-and-
relative-instruction facility are added.
These are:

- ADD HALFWORD IMMEDIATE

- BRANCH RELATIVE AND SAVE

- BRANCH RELATIVE ON CONDITION

- BRANCH RELATIVE ON COUNT

- BRANCH RELATIVE ON INDEX
HIGH

- BRANCH RELATIVE ON INDEX LOW
OR EQUAL

- COMPARE HALFWORD IMMEDIATE

- LOAD HALFWORD IMMEDIATE

- MULTIPLY SINGLE (two instructions)

- MULTIPLY HALFWORD IMMEDIATE

- TEST UNDER MASK HIGH

- TEST UNDER MASK LOW

¢ In Chapter 10, “Control Instructions,” in the
STORE CPU ID definition, the term “model
number” is changed to “machine-type
number,” and programming notes about the
version code and CPU identification number
are added.

¢ In Chapter 11, “Machine-Check Handling,” the
ancillary-report bit in the machine-check-
interruption code is described.

e In Chapter 16, “l/O Interruptions,” the
ancillary-report bit in the subchannel logout is
described.

e In Chapter 17, “I/O Support Functions,” the
ancillary-report bit in the channel-report word
is described.

The above changes may affect other chapters
besides the ones listed.

Summary of Changes in Third
Edition

The third edition of this publication differs from the
previous edition principally by containing the defi-
nition of the subspace-group facility. The third
edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

¢ |n Chapter 3, “Storage”

— The virtual-address enhancement of sup-
pression on protection is added.

— Fields of the subspace-group facility are
added to the ASN-second-table entry and
the segment-table designation.

— For CPU table entries that are addressed
by real or absolute addresses, it is unpre-
dictable whether the address wraps or an
addressing exception is recognized.

— All zeros may be stored at real location
160 during a subspace-replacement oper-
ation.

¢ In Chapter 4, “Control™:

— A trace entry for BRANCH IN SUBSPACE
GROUP is added.

— An instruction-fetching PER event for an
interruptible instruction may be discarded
under certain conditions when a unit of
operation of the instruction remains to be
executed.

— Leap seconds 18 and 19 are added.
¢ |n Chapter 5, “Program Execution”:

— The BRANCH IN SUBSPACE GROUP
instruction is introduced in |“Subroutine
[Cinkage without _the Linkage Stack” on

— Fields for the subspace-group facility are
added to the dispatchable-unit control
table and the ASN-second-table entry.

— Effects of the subspace-group facility on
the instructions PROGRAM CALL,
PROGRAM TRANSFER, PROGRAM
RETURN, SET SECONDARY ASN, and
LOAD ADDRESS SPACE PARAMETERS

are introduced in [‘Subspace-Replacement]
[Operations” on page 5-56.

¢ In Chapter 6, “Interruptions”:

— It is clarified that an instruction is consid-
ered to be executed even if it has an odd
instruction address or cannot be fetched
because of an access exception.

— Subspace-replacement exceptions (a col-
lective name) are added.

¢ In Chapter 8, “Decimal Instructions,” for ZERO
AND ADD when the operands overlap and the
rightmost byte of the first operand is to the left
of the rightmost byte of the second operand, a
data exception may or may not be recognized.

Preface XXV

¢ |n Chapter 10, “Control Instructions”:

— The BRANCH IN SUBSPACE GROUP
instruction is added, and subspace-
replacement operations are added to the
definitions of PROGRAM CALL,
PROGRAM RETURN, PROGRAM
TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAME-
TERS.

— The address placed in general register R1
when LOAD REAL ADDRESS sets a
nonzero condition code is real or absolute
in accordance with the type of address
used during the attempted translation.

— For MOVE PAGE (facility 2), when the
first operand is valid in main storage and
the second operand is valid in an unavail-
able expanded-storage block, a storage-
alteration PER event may be recognized,
and the change bit may be set, for the first
operand even though the first-operand
location remains unchanged.

¢ In Chapter 12, “Operator Facilities,” a model

may have, as an alternative to a wait indi-
cator, a means of indicating a time-averaged
value of the PSW wait-state bit.

¢ In Chapter 16, “I/O Interruptions”:

— The initial status that causes a sequence
code of 010 binary to be placed in the
subchannel logout is described in
[FSequence Code (SC)” on page 16-35

— An authorization-check bit is added to the
extended-report word in a format-0
extended-status word. The bit indicates,
when one, that the start or resume func-
tion was terminated because the channel
subsystem is in the isolated state.

e |n Chapter 17, “I/O Support Functions”:

— Additional conditions under which the
device-connect-time field in the measure-
ment block is not updated are described in
[‘Device-Connect Time” on page 17-4]

— It is clarified that an IPL program should
not be placed in the low 512 bytes of
storage because that area is reserved.

¢ In Appendix |, “EBCDIC and Other Codes,” a
chart showing control codes and a
94-character EBCDIC character set is
replaced by a table showing control codes,
various EBCDIC character sets and code
pages, ASCIl, ISO-8, and IBM-PC code
pages, and BookMaster* symbols.

The above changes may affect other chapters
besides the ones listed.

Summary of Changes in Second
Edition

The second edition of this publication contains
minor clarifications and corrections and also the

following significant changes relative to the pre-
vious edition with TNL SN22-5400:

¢ In Chapter 3, “Storage™

— The suppression-on-protection facility is
defined.

— The checking of bits 28-31 or 26-31 in the
ASN-first-table entry and bits 30, 31, and
60-63 in the ASN-second-table entry is
made optional.

¢ |n Chapter 4, “Control™:

— It is made unpredictable whether an
instruction-fetching PER event is indicated
for the first halfword of an instruction when
an access exception is recognized for the
first halfword.

— The standard epoch for the time-of-day
(TOD) clock is described in terms of Coor-
dinated Universal Time instead of
Greenwich Mean Time.

¢ In Chapter 7, “General Instructions”:

— The instructions of the string-instruction
facility, COMPARE LOGICAL STRING,
MOVE STRING, and SEARCH STRING,
are added.

— The COMPARE UNTIL SUBSTRING
EQUAL instruction is added. This instruc-
tion was introduced in ESA/370 but has
not previously been described.

BookMaster is a trademark of the International Business Machines Corporation.

XXVi ESA/390 Principles of Operation

In Chapter 10, “Control Instructions,” the SET
ADDRESS SPACE CONTROL FAST instruc-
tion is added.

In Chapter 12, “Operator Facilities,” a defi-
nition of the effect of initial machine loading
(IML) on expanded storage is added.

In Chapter 17, “I/O Support Functions,” the
control-unit-queuing-measurement facility is
added.

In Appendix A, “Number Representation and
Instruction-Use Examples™

— Examples of the use of the instructions of
the string-instruction facility are added.

— A description of the tree used by the
sorting instructions, COMPARE AND
FORM CODEWORD and UPDATE TREE,
and an example of the use of the sorting
instructions are added.

The above changes may affect other chapters
besides the ones listed.

Preface XXVii

XXViii ESA/390 Principles of Operation

Chapter 1. Introduction

Highlights of ESA/390 1-1

The ESA/370 and 370-XA Base 1-7
System Program 1-9
Compatibility 1-9

Compatibility among ESA/390 Systems . . 1-9

Compatibility among ESA/390, ESA/370,

370-XA, and System/370 1-9
Control-Program Compatibility 1-9
Problem-State Compatibility 1-10

Availability 000 1-10

This publication provides, for reference purposes,
a detailed Enterprise Systems Architecture/390
(ESA/390) description.

The architecture of a system defines its attributes
as seen by the programmer, that is, the concep-
tual structure and functional behavior of the
machine, as distinct from the organization of the
data flow, the logical design, the physical design,
and the performance of any particular implementa-
tion. Several dissimilar machine implementations
may conform to a single architecture. When the
execution of a set of programs on different
machine implementations produces the results
that are defined by a single architecture, the
implementations are considered to be compatible
for those programs.

Highlights of ESA/390

ESA/390 is the next step in the evolution from the
System/360 to the System/370, System/370
extended architecture (370-XA), and Enterprise
Systems Architecture/370 (ESA/370). ESA/390
includes all of the facilities of ESA/370 and pro-
vides a broad range of extensions. Some of these
extensions either apply directly to application-
program development or are basic machine inter-
faces, and they are described in detail in either
this publication or another generally available pub-
lication. The remaining extensions are suitable for
use only by means of specialized control or
support programs, and detailed descriptions of
these extensions are not provided.

All extensions to ESA/370 that form ESA/390 are
summarized below. For those extensions
described in detail in this publication, a compar-
ison of the differences among ESA/390, ESA/370,
370-XA, and System/370 appears in Appendixes
D, E, and F.

ESA/390 was announced in September, 1990.
Any extension added subsequently has the date of
its announcement in parentheses at the end of its
summary.

The following extensions are described in detail in
this publication:

e Access-list-controlled protection allows store-
type storage references to an address space
to be prohibited by means of a bit in the
access-list entry used to access the space.
Thus, different users having different access
lists can have different capabilities to store in
the same address space.

e The program-event-recording facility 2 (PER
2) is an alternative to the original PER facility,
which is now named PER 1. PER 2 provides
the option of having a successful-branching
event occur only when the branch target is
within the designated storage area, and it pro-
vides the option of having a storage-alteration
event occur only when the storage area is
within designated address spaces. The use of
these options improves performance by
allowing only PER events of interest to occur.
PER 2 deletes the ability to monitor for
general-register-alteration events.

PER 2 includes extensions that provide addi-
tional information about PER events. The
extensions were described in detail beginning
in the fourth edition of this publication.

e Concurrent sense improves performance by
allowing sense information to be presented at
the time of an interruption due to a unit-check
condition, thus avoiding the need for a sepa-
rate 1/0 operation to obtain the sense informa-
tion.

e Storage-protection override provides a new
form of subsystem storage protection that
improves the reliability of a subsystem exe-
cuted in an address space along with possibly

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999 1-1

erroneous application programs. When
storage-protection override is made active by
a control-register bit, fetches and stores by the
CPU are permitted to storage locations having
a storage key of 9 regardless of the access
key used by the CPU. If the subsystem is in
key-8 storage and is executed with a PSW
key of 8, for example, and the application pro-
grams are in key-9 storage and are executed
with a PSW key of 9, accesses by the sub-
system to the application-program areas are
permitted while accesses by the application
programs to the subsystem area are denied.
(September, 1991)

Move-page facility 2 extends the MOVE PAGE
instruction introduced in ESA/370 by allowing
use of a specified access key for either the
source or the destination operand, by allowing
improved performance when the destination
operand will soon be referenced, and by
allowing improved performance when an
operand is invalid in both main and expanded
storage. The ESA/370 version of MOVE
PAGE is now called move-page facility 1 and
is in Chapter 7, “General Instructions.” MOVE
PAGE of move-page facility 2 is in Chapter
10, “Control Instructions.” Some details about
the means for control-program support of
MOVE PAGE are not provided. (September,
1991)

The square-root facility consists of the
SQUARE ROQOT instruction and the square-
root exception. The instruction extracts the
square root of a floating-point operand in
either the long or short format. The instruction
is the same as that provided on some models
of the IBM 4341, 4361, and 4381 Processors.
(September, 1991)

The string-instruction facility (or logical string
assist) provides instructions for (1) moving a
string of bytes until a specified ending byte is
found, (2) logically comparing two strings until
an inequality or a specified ending byte is
found, and (3) searching a string of a speci-
fied length for a specified byte. The first two
instructions are particularly useful in a C
program in which strings are normally delim-
ited by an ending byte of all zeros. (June,
1992)

e The suppression-on-protection facility causes

a protection exception due to page protection
to result in suppression of instruction exe-
cution instead of termination of instruction
execution, and it causes the address and an
address-space identifier of the protected page
to be stored in low storage. This is useful in
performing the AIX/ESA* copy-on-write func-
tion, in which AIX/ESA causes the same page
of different address spaces to map to a single
page frame of real storage so long as a store
in the page is not attempted and then, when a
store is attempted in a particular address
space, assigns a unique page frame to the
page in that address space and copies the
contents of the page to the new page frame.
(February, 1993)

The set-address-space-control-fast facility con-
sists of the SET ADDRESS SPACE
CONTROL FAST (SACF) instruction, which
possibly can be used instead of the previously
existing SET ADDRESS SPACE CONTROL
(SAC) instruction, depending on whether all of
the SAC functions are required. SACF, unlike
SAC, does not perform the serialization and
checkpoint-synchronization functions, nor does
it cause copies of prefetched instructions to be
discarded. SACF provides improved perform-
ance on some models. (February, 1993)

The subspace-group facility includes the
BRANCH IN SUBSPACE GROUP instruction,
which can be used to give or return control
from one address space to another in a group
of address spaces called a subspace group,
with this giving and returning of control being
done with better performance than can be
obtained by means of the PROGRAM CALL
and PROGRAM RETURN or PROGRAM
TRANSFER instructions. One address space
in the subspace group is called the base
space, and the other address spaces in the
group are called subspaces. It is intended
that each subspace contain a different subset
of the storage in the base space, that the
base space and each subspace contain a
subsystem control program, such as CICS*,
and application programs, and that each sub-
space contain the data for a single transaction
being processed under the subsystem control

AIX/ESA and CICS are trademarks of the International Business Machines Corporation.

1-2

ESA/390 Principles of Operation

program. The placement of the data for each
transaction in a different subspace prevents
the processing of a transaction from erro-
neously damaging the data of other trans-
actions. The data of the control program can
be protected from the transaction processing
by means of the storage-protection-override
facility. (April, 1994)

The virtual-address enhancement of sup-
pression on protection provides that if dynamic
address translation (DAT) was on when a pro-
tection exception was recognized, the
suppression-on-protection result is indicated,
and the address of the protected location is
stored, only if the address is one that was to
be translated by DAT; the suppression-on-
protection result is not indicated if the address
that would be stored is a real address. This
enhancement allows the stored address to be
translated reliably by the control program to
determine if the exception was due to page
protection as opposed to key-controlled pro-
tection. The enhancement extends the useful-
ness of suppression on protection to operating
systems like MVS/ESA* that use key-
controlled protection. (September, 1994)

The immediate-and-relative-instruction facility
includes 13 new instructions, most of which
use a halfword-immediate value for either
signed-binary arithmetic operations or relative
branching. The facility reduces the need for
general registers, and, in particular, it elimi-
nates the need to use general registers to
address branch targets. As a result, the
general registers and access registers can be
allocated more efficiently in programs that
require many registers. (September, 1996)

The compare-and-move-extended facility pro-
vides new versions of the COMPARE
LOGICAL LONG and MOVE LONG
instructions. The new versions increase the
size of the operand-length specifications from
24 bits to 32 bits, which can be useful when
objects larger than 16M bytes are processed
through the use of 31-bit addressing. The
new versions also periodically complete to
allow software polling in a multiprocessing
system. (September, 1996)

The checksum facility consists of the
CHECKSUM instruction, which can be used to
compute a 16-bit or 32-bit checksum in order
to improve TCP/IP (transmission-control

protocol/internet protocol) performance. (Sep-
tember, 1996)

The called-space-identification facility
improves serviceability by further identifying
the called address space in a linkage-stack
state entry formed by the PROGRAM CALL
instruction. (September, 1996)

The branch-and-set-authority facility consists
of the BRANCH AND SET AUTHORITY
instruction, which can be used to improve the
performance of linkages within an address
space by replacing PROGRAM CALL,
PROGRAM TRANSFER, and SET PSW KEY
FROM ADDRESS instructions. (June, 1997)

The perform-locked-operation facility consists
of the unprivileged PERFORM LOCKED
OPERATION instruction, which appears to
provide concurrent interlocked-update refer-
ences to multiple storage operands. A func-
tion code of the instruction can specify any of
six operations: compare and load, compare
and swap, double compare and swap,
compare and swap and store, compare and
swap and double store, and compare and
swap and triple store. The function code
further specifies either word or doubleword
operands. The instruction can be used to
avoid the use of programmed locks in a multi-
processing system. (June, 1997)

Four additional floating-point facilities improve
the hexadecimal-floating-point (HFP) capability
of the machine and add a binary-floating-point
(BFP) capability. The facilities are:

— Basic floating-point extensions, which pro-
vides 12 additional floating-point registers
to make a total of 16 floating-point regis-
ters. This facility also includes a floating-
point-control register and means for
saving the contents of the new registers
during a store-status operation or a
machine-check interruption.

— Floating-point-support (FPS) extensions,
which provides eight new instructions,
including four to convert data between the
HFP and BFP formats.

— Hexadecimal-floating-point (HFP) exten-
sions, which provides 26 new instructions
to operate on data in the HFP format. All
of these are counterparts to new
instructions provided by the BFP facility,

Chapter 1. Introduction 1-3

1-4

including conversion between floating-
point and fixed-point formats, and a more
complete set of operations on the
extended format.

— Binary floating-point (BFP), which defines
short, long, and extended binary-floating-
point (BFP) data formats and provides 87
new instructions to operate on data in
these formats. The BFP formats and
operations provide everything necessary
to conform to the IEEE standard
(ANSV/IEEE Std 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic, dated
August 12, 1985) except for conversion
between binary-floating-point numbers and
decimal strings, which must be provided in
software.

(May, 1998)

The program-call-fast facility provides the
PROGRAM CALL FAST instruction, which is a
variation of the stacking PROGRAM CALL
instruction. PROGRAM CALL FAST omits
certain authorization checking and state
changes and also tracing, with the result that
its performance is improved relative to that of
stacking PROGRAM CALL. (May, 1998)

The resume-program facility consists of the
RESUME PROGRAM instruction, which
restores, from a specified save area, the
instruction address and certain other fields in
the current PSW and also the contents of an
access-and-general-register pair. RESUME
PROGRAM allows a problem-state
interruption-handling program to restore the
state of an interrupted program and return to
that program despite that a register is required
for addressing the save area from which the
state is restored. (May, 1998)

The trap facility provides the TRAP
instructions (a two-byte TRAP2 instruction and
a four-byte TRAP4 instruction) that can
overlay instructions in an application program
to give control to a program that can perform
fix-up operations on data being processed,
such as dates that may be a “Year-2000”
problem. RESUME PROGRAM can be used
to return from the fix-up program. TRAP and
RESUME PROGRAM can improve perform-
ance by avoiding program interruptions that
would otherwise be needed to give control to
and from the fix-up program. (May, 1998)

ESA/390 Principles of Operation

e The

extended-TOD-clock facility includes
(1) an extension of the TOD clock from 64
bits to 104 bits, allowing greater resolution;
(2) a TOD programmable register, which con-
tains a TOD programmable field that can be
used to identify the configuration providing a
TOD-clock value in a sysplex; (3) the SET
CLOCK PROGRAMMABLE FIELD instruction,
for setting the TOD programmable field in the
TOD programmable register; and (4) the
STORE CLOCK EXTENDED instruction,
which stores both the longer TOD-clock value
and the TOD programmable field. STORE
CLOCK EXTENDED can be used in the future
when the TOD clock is further extended to
contain time values that exceed the current
year-2042 limit (when there is a carry out of
the current bit O of the TOD clock). (August,
1998)

The TOD-clock-control-override facility pro-
vides a control-register bit that allows setting
the TOD clock under program control, without
use of the manual TOD-clock control of any
CPU. (August, 1998)

The store-system-information facility provides
the privleged STORE SYSTEM INFORMA-
TION instruction, which can be used to obtain
information about a component or components
of a virtual machine, a logical partition, or the
basic machine. (January, 1999)

The extended-translation facility includes the
CONVERT UNICODE TO UTF-8, CONVERT
UTF-8 TO UNICODE, and TRANSLATE

EXTENDED instructions, all of which can
improve performance. TRANSLATE
EXTENDED can be used in place of a
TRANSLATE AND TEST instruction that

locates an escape character, followed by a
TRANSLATE instruction that translates the
bytes preceding the escape character. (April,
1999)

The following extensions are described in detail in
other publications:

e The Enterprise Systems Connection Architec-

ture (ESCON) introduces a new type of
channel that uses an optical-fiber communi-
cation link between channels and control
units. Information is transferred serially by bit,
at 200 million bits per second, up to a
maximum distance of 60 kilometers. The
optical-fiber technology and serial trans-

mission simplify cabling and improve reliability.
See the publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202.

The ESCON channel-to-channel adapter
(ESCON CTCA) provides the same type of
function for serial channel paths as is avail-
able for the parallel-l/O-interface channel
paths. See the publication IBM Enterprise
Systems Architecture/390 ESCON Channel-to-
Channel Adapter, SA22-7203.

I/O-device self-description allows a device to
describe itself and its position in the I/O con-
figuration. See the publication IBM Enterprise
Systems Architecture/390 Common I/O-Device
Commands, SA22-7204.

Vector extensions include an instruction for
loading the vector interruption index inde-
pendent of the rest of the vector-status reg-
ister, four instructions for multiplying and then
adding or subtracting, and four instructions for
extracting the square root. See the publica-
tion IBM Enterprise Systems Architecture/390
Vector Operations, SA22-7207. (September,
1991)

The compression facility performs a Ziv-
Lempel type of compression and expansion by
means of static (nonadaptive) dictionaries that
are to be prepared by a program before the
compression and expansion operations.
Because the dictionaries are static, the com-
pression facility can provide good com-
pression not only for long sequential data
streams (for example, archival or network
data) but also for randomly accessed short
records (for example, 80 bytes). See the pub-

financial-transaction and bulk-encryption envi-
ronments, and it complies with the Data
Encryption Standard (DES).

— Usability of the cryptographic facility is
extended to virtual-machine environments,
which allows the facility to be used by
MVS/ESA being executed under
VM/ESA*, which in turn may be executed
either under another VM/ESA or in a
logical partition. (September, 1991)

e The external-time-reference facility provides a

means to initiate and maintain the synchroni-
zation of TOD clocks to an external time refer-
ence (ETR). Synchronization tolerance of a
few microseconds can be achieved, and the
effect of leap seconds is taken into account.
The facility consists of an ETR sending unit
(Sysplex Timer*), which may be duplexed, two
or more ETR receiving units, and optical-fiber
cables. The cables are used to connect the
ETR sending unit, which is an external device,
to ETR receiving units of the configuration.
CPU instructions are provided for setting the
TOD clock to the value supplied by the ETR
sending unit.

— The ETR automatic-propagation-delay-
adjustment function adjusts the time
signals from the ETR to the attached
processors to compensate for the propa-
gation delay on the cables to the
processors, thus allowing the cables to be
of different lengths. (September, 1991)

— The ETR external-time-source function
synchronizes the ETR to a time signal
received from a remote location by means
of a telephone or radio. (September,

lication I1BM Enterprise Systems 1991)
QZ:; Z'ticztgge/‘?'gzob Dilgg 3 Compression, Extended sorting provides instructions that
i - (February,) improve the performance of the DB2* sorting

The remaining extensions of ESA/390, for which function.
?Oe”ts\'l:/z(_j descriptions are not provided, are as e Broadcasted purging provides for conditionally

updating tables associated with address trans-
e The integrated cryptographic facility provides a lation and clearing address-translation
number of instructions to protect data privacy, lookaside buffers in multiple CPUs.
to support message authentication and per-
sonal identification, and to facilitate key man-
agement. The high-performance cipher
capability of the facility is designed for

e Other PER extensions, besides those
described beginning in the fourth edition of
this publication, are an augmentation of PER

MVS/ESA, VM/ESA, Sysplex Timer, and DB2 are trademarks of the International Business Machines Corporation.

Chapter 1. Introduction 1-5

1-6

2 that provides additional PER function in the
interpretive-execution mode.

Channel-subsystem call provides various func-
tions for use in the management of the I/O
configuration. Some of the functions acquire
information about the configuration from the
accessible elements of the configuration, while
others dynamically change the configuration.

The cancel-I/O facility allows the program to
withdraw a pending start function from a des-
ignated subchannel without signaling the
device, which is useful in certain error-
recovery situations. (September, 1991)

The operational extensions are a number of
other improvements that result in increased
availability and ease of use of the system, as
follows:

— Automatic-reconfiguration permits an oper-
ating system in an LPAR partition to
declare itself willing to be terminated sud-
denly, usually to permit its storage and
CPU resources to be acquired by an adja-
cent partition that is dynamically absorbing
the work load of another system that has
failed. =~ Other functions deactivate and
reset designated participating partitions.

— A new storage-reconfiguration command
decreases the time needed to reconfigure
storage by allowing multiple requests for
reconfiguration to be made by means of a
single communication with the service
processor.

— SCP-initiated reset allows a system
control program (SCP) to reset its 1/0O con-
figuration prior to entering the disabled
wait state following certain check condi-
tions.

— Console integration simplifies configuration
requirements by reducing by one the
number of consoles required by MVS.

— The processor-availability facility enables
a CPU experiencing an unrecoverable
error that will cause a check stop to save
its state and alert the other CPUs in the
configuration. This allows, in many cases,
another CPU to continue execution of the
program that was in execution on the
failing CPU. The facility is applicable in
both the ESA/390 mode and the LPAR
mode. (April, 1991)

ESA/390 Principles of Operation

e Extensions for virtual machines are a number

of improvements to the interpretive-execution
facility, as follows:

— The VM-data-space facility provides for
making the ESA/390 access-register archi-
tecture more useful in virtual-machine
applications. The facility improves the
ability to address a larger amount of data
and to share data. For information on
how VM/ESA uses the VM-data-space
facility, see the publication VM/ESA CP
Programming Services, SC24-5520.

— A new storage-key function improves per-
formance by removing the need for the
previously used RCP area.

— Interpreted SIE (available with region relo-
cation) is improved to permit preferred
guests under VM when VM itself is oper-
ating as a high-performance guest.

— Other improvements include an optional
special-purpose lookaside for some of the
guest-state information and greater
freedom in certain implementation
choices.

e The ESCON-multiple-image facility (EMIF)

allows multiple logical partitions to share
ESCON channels and optionally to share any
of the control units and associated 1/0O devices
configured to these shared ESCON channels.
This can reduce ESCON-channel require-
ments, improve channel utilization, and
improve 1/O connectivity. (June, 1992)

PR/SM LPAR mode is enhanced to allow up
to 10 logical partitions in a single-image con-
figuration and 20 in a physically-partitioned
configuration. The previous limits were seven
and 14, respectively. (June, 1992)

The asynchronous-pageout facility consists of
instructions for initiating and testing for com-
pletion of the asynchronous, to the CPU,
transfer of a 4K-byte block of data from main
storage to expanded storage. These
instructions can be used to improve perform-
ance when a large amount of paging activity
to expanded storage is required. (June, 1992)

The asynchronous data mover provides for
transferring one or more groups of multiple
contiguous pages from main storage to
expanded storage or from expanded storage
to main storage in a single operation. Similar

to /O operations, these transfers are per-
formed largely asynchronous to instruction
execution. This facility can improve processor
performance when large groups of pages are
moved between main storage and expanded
storage. (February, 1993)

The coupling facility enables high-performance
data sharing among MVS/ESA systems that
are connected by means of the facility. The
coupling facility provides storage that can be
dynamically partitioned for caching data in
shared buffers, maintaining work queues and
status information in shared lists, and locking
data by means of shared lock controls.
MVS/ESA services provide access to and
manipulation of the coupling-facility contents.
(April, 1994)

The ESA/370 and 370-XA Base

ESA/390 includes the complete set of facilities of
ESA/370 as its base. This section briefly outlines
most of the facilities that were additions in 370-XA
as compared to System/370 and that were addi-
tions in ESA/370 as compared to 370-XA.

The CPU-related facilities that were new in
370-XA are as follows:

Bimodal addressing provides two modes of
operation: a 24-bit addressing mode for the
execution of old programs and a 31-bit
addressing mode.

31-bit logical addressing extends the virtual
address space from the 16M bytes address-
able with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

31-bit real and absolute addressing provides
addressability for up to 2G bytes of main
storage.

The 370-XA protection facilities include key-
controlled protection on only 4K-byte blocks,
page protection, and, as in System/370, low-
address protection for addresses below 512.
Fetch-protection override eliminates fetch pro-
tection for locations 0-2047.

The tracing facility assists in the determination
of system problems by providing an ongoing
record in storage of significant events.

The COMPARE AND FORM CODEWORD
and UPDATE TREE instructions facilitate
sorting applications. (An example of use is in

Appendix A, “Number Representation and

Instruction-Use Examples.] The example pre-

viously was not published.)

The vector facility is a high-performance
means of performing numerically intensive
computations. This facility is described in the
publication IBM Enterprise Systems
Architecture/390 Vector Operations,
SA22-7207. The vector facility is no longer
provided on current models.

The interpretive-execution facility allows cre-
ation of virtual machines that may operate
according to several architectures and whose
performance is enhanced because many
virtual-machine functions are directly inter-
preted by the machine rather than simulated
by the program. This facility is described in
the publication IBM 370-XA Interpretive Exe-
cution, SA22-7095.

The service-call-logical-processor (SCLP)
facility provides a means of communicating
between the control program and the service
processor for the purpose of describing and
changing the configuration. This facility is not
described.

The I/O-related differences between 370-XA and
System/370 result from the 370-XA channel sub-
system, which includes:

e Path-independent addressing of 1/O devices,

which permits the initiation of I/O operations
without regard to which CPU is executing the
I/O instruction or how the 1/O device is
attached to the channel subsystem. Any I/O
interruption can be handled by any CPU
enabled for it.

Path management, whereby the channel sub-
system determines which paths are available
for selection, chooses a path, and manages
any busy conditions encountered while
attempting to initiate 1/0O processing with the
associated devices.

Dynamic reconnection, which permits any 1/O
device using this capability to reconnect to
any available channel path to which it has
access in order to continue execution of a
chain of commands.

Programmable interruption subclasses, which
permit the programmed assignment of
I/O-interruption requests from individual I/O

Chapter 1. Introduction 1-7

devices to any one of eight maskable inter-
ruption queues.

An additional CCW format for the direct use of
31-bit addresses in channel programs. The
new CCW format, called format 1, is provided
in addition to the System/370 CCW format,
now called format 0.

Address-limit checking, which provides an
additional storage-protection facility to prevent
data access to storage locations above or
below a specified absolute address.

Monitoring facilities, which can be invoked by
the program to cause the channel subsystem
to measure and accumulate key I/O-resource
usage parameters.

Status-verification facility, which reports inap-
propriate combinations of device-status bits
presented by a device.

A set of 13 I/O instructions, with associated
control blocks, which are provided for the
control of the channel subsystem.

The facilities appearing in System/370 but not pro-
vided in 370-XA are described in Appendix F.

The facilities that were new in ESA/370 are as
follows:

1-8

Sixteen access registers permit the program
to have immediate access to storage oper-
ands in up to 16 2G-byte address spaces,
including the address space in which the
program resides. In a dynamic-address-
translation mode named access-register
mode, the instruction B field, or for certain
instructions the R field, designates both a
general register and an access register, and
the contents of the access register, along with
the contents of protected tables, specify the
operand address space to be accessed. By
changing the contents of the access registers,
the program, under the control of an authori-
zation mechanism, can have fast access to
hundreds of different operand address spaces.

A linkage stack is used in a functionally
expanded mechanism for passing control
between programs in either the same or dif-
ferent address spaces. This mechanism
makes use also of the previously existing
PROGRAM CALL instruction, an extended

ESA/390 Principles of Operation

entry-table entry, and a new PROGRAM
RETURN instruction. The mechanism saves
various elements of status, including access-
register and general-register contents, during
a calling linkage, provides for changing the
current status during the calling linkage, and
restores the original status during the
returning linkage. The linkage stack can also
be used to save and restore access-register
and general-register contents during a branch-
type linkage performed by the new instruction
BRANCH AND STACK.

A translation mode named home-space mode
provides an efficient means for the control
program to obtain control in the address
space, called the home address space, in
which the principal control blocks for a
dispatchable unit (a task or process) are kept.

The semipriviieged MOVE WITH SOURCE
KEY and MOVE WITH DESTINATION KEY
instructions allow bidirectional movement of
data between storage areas having different
storage keys, without the need to change the
PSW key.

The privleged LOAD USING REAL
ADDRESS and STORE USING REAL
ADDRESS instructions allow the control
program to access data in real storage more
efficiently.

The private-space facility allows an address
space not to contain any common segments
and causes low-address protection and fetch-
protection override not to apply to the address
space.

The unprivleged MOVE PAGE instruction
allows the program to move a page of data
between main and expanded storage, pro-
vided that the source and destination pages
are both valid. Some details about the means
for control-program support of MOVE PAGE
are not provided. The ESA/370 version of
MOVE PAGE is now called move-page facility
1.

The Processor Resource/Systems Manager*
(PR/SM*) feature provides support for multiple
preferred guests under VM/XA and provides
the logically partitioned (LPAR) mode, with the
latter providing flexible partitioning of
processor resources among multiple logical

partitions. Certain aspects of the LPAR use of
PR/SM are described in the publication /BM
ES/3090 Processor Complex Processor
Resource/Systems Manager Planning Guide,
GA22-7123.

¢ The COMPARE UNTIL SUBSTRING EQUAL
instruction provides improved performance of
the compression of IMS log data sets and can
be useful in other programs also. (The
instruction is in |Chapter 7, “General|
It previously was not described.)

System Program

ESA/390 is designed to be used with a control
program that coordinates the use of system
resources and executes all 1/O instructions,
handles exceptional conditions, and supervises
scheduling and execution of multiple programs.

Compatibility

Compatibility among ESA/390
Systems

Although systems operating as defined by

ESA/390 may differ in implementation and phys-
ical capabilities, logically they are upward and
downward compatible. Compatibility provides for
simplicity in education, availability of system
backup, and ease in system growth. Specifically,
any program written for ESA/390 gives identical
results on any ESA/390 implementation, provided
that the program:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, 1/0 equipment, or optional
facilities) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program must
not depend on interruptions caused by the use
of operation codes or command codes that
are not installed in some models. Also, it
must not use or depend on fields associated
with uninstalled facilities. For example, data

should not be placed in an area used by
another model for fixed-logout information.
Similarly, the program must not use or depend
on unassigned fields in machine formats
(control registers, instruction formats, etc.) that
are not explicitly made available for program
use.

4. Does not depend on results or functions that
are defined to be unpredictable or model-
dependent or are identified as undefined.
This includes the requirement that the
program should not depend on the assign-
ment of device numbers and CPU addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be devi-
ations from the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting
compatibility.

Compatibility among ESA/390,
ESA/370, 370-XA, and System/370

Control-Program Compatibility

Control programs written for 370-XA or ESA/370
can be directly transferred to systems operating as
defined by ESA/390. Almost all of the new func-
tions that were introduced in ESA/370 are enabled
only when a control-register bit assigned in
ESA/370 and ESA/390 is set to one. When this
bit is zero, the machine operates essentially as
specified for 370-XA; the most significant
exceptions are (1) instructions that load and store
the contents of the access registers can be exe-
cuted successfully, and (2) certain previously
unassigned real and absolute storage locations
below address 512 are stored in during the store-
status operation, certain program interruptions,
and the machine-check interruption. When the
new control-register bit is zero, no unprivileged or
semiprivileged instruction can place the CPU in
the access-register mode, and so the access reg-
isters cannot be used to specify address spaces.

Control programs written for System/370 cannot
be directly transferred to systems operating as
defined by ESA/390. This is because in the

Processor Resource/Systems Manager and PR/SM are trademarks of the International Business Machines Corporation.

Chapter 1. Introduction 1-9

370-XA base of ESA/390 the basic-control mode
is not present and the facilities for 1/O and
dynamic address translation are changed. (See
Appendixes D, E, and F for a detailed comparison
among ESA/390, ESA/370, 370-XA, and
System/370.)

Problem-State Compatibility

A high degree of compatibility exists at the
problem-state level in going forward from
ESA/370, 370-XA, or System/370 to ESA/390.
Because the majority of a user's applications are
written for the problem state, this problem-state
compatibility is useful in many installations.

A problem-state program written for ESA/370,
370-XA, or System/370 operates with ESA/390,
provided that the program:

1. Complies with the limitations described in
[‘“Compatibility among ESA/390 Systems” on|

2. Is not dependent on control-program facilities
which are unavailable on the system.

3. Takes into account other changes made to the
System/370 architectural definition that affect
compatibility between System/370 and the
370-XA base of ESA/390. These changes are
described in endix F, “Comparison
[between System/370 and 370-XA.]

Programming Notes:

1. This publication assigns meanings to various
operation codes, to hit positions in
instructions, channel-command words, regis-
ters, and table entries, and to fixed locations
in the low 512 bytes of storage. Unless spe-
cifically noted, the remaining operation codes,
bit positions, and low-storage locations are
reserved for future assignment to new facilities
and other extensions of the architecture.

To ensure that existing programs operate if
and when such new facilities are installed,
programs should not depend on an indication
of an exception as a result of invalid values
that are currently defined as being checked. If
a value must be placed in unassigned posi-
tions that are not checked, the program
should enter zeros. When the machine pro-
vides a code or field, the program should take
into account that new codes and bits may be
assigned in the future. The program should

1-10 ESA/390 Principles of Operation

not use unassigned low-storage locations for
keeping information since these locations may
be assigned in the future in such a way that
the machine causes the contents of the
locations to be changed.

2. If a control program is used that does not
support the use of access registers, a
problem-state program under this control
program still is able to load and store the con-
tents of the access registers, and it might do
so simply to use the access registers for data
storage instead of for addressing. However,
the use of access registers in such circum-
stances may be unsuccessful because the
unsupporting control program does not save
and restore the contents of the access regis-
ters when switching between dispatchable
units. Furthermore, the use of access regis-
ters in such circumstances may constitute a
loss of security because the contents of
access registers loaded by one dispatchable
unit will be visible to other dispatchable units.
To avoid the problems referred to here, a
program using access registers must be exe-
cuted only in a system with a control program
that properly supports the use of access regis-
ters.

Availability

Availability is the capability of a system to accept
and successfully process an individual job.
Systems operating in accordance with ESA/390
permit substantial availability by (1) allowing a
large number and broad range of jobs to be proc-
essed concurrently, thus making the system
readily accessible to any particular job, and
(2) limiting the effect of an error and identifying
more precisely its cause, with the result that the
number of jobs affected by errors is minimized
and the correction of the errors facilitated.

Several design aspects make this possible.

e A program is checked for the correctness of
instructions and data as the program is exe-
cuted, and program errors are indicated sepa-
rate from equipment errors. Such checking
and reporting assists in locating failures and
isolating effects.

e The protection facilities, in conjunction with
dynamic address translation and the sepa-
ration of programs and data in different

address spaces, permit the protection of the
contents of storage from destruction or misuse
caused by erroneous or unauthorized storing
or fetching by a program. This provides
increased security for the user, thus permitting
applications with different security require-
ments to be processed concurrently with other
applications.

Dynamic address translation allows isolation
of one application from another, still permitting
them to share common resources. Also, it
permits the implementation of virtual
machines, which may be used in the design
and testing of new versions of operating
systems along with the concurrent processing
of application programs. Additionally, it pro-
vides for the concurrent operation of incom-
patible operating systems.

The use of access registers allows programs,
data, and different collections of data to reside
in different address spaces, and this further
reduces the likelihood that a store using an
incorrect address will produce either erro-
neous results or a system-wide failure.

Multiprocessing and the channel subsystem
permit better use of storage and processing
capabilities, more direct communication
between CPUs, and duplication of resources,
thus aiding in the continuation of system oper-
ation in the event of machine failures.

MONITOR CALL, program-event recording,
and the timing facilities permit the testing and
debugging of programs without manual inter-

vention and with little effect on the concurrent
processing of other programs.

On most models, error checking and cor-
rection (ECC) in main storage, CPU retry, and
command retry provide for circumventing inter-
mittent equipment malfunctions, thus reducing
the number of equipment failures.

An enhanced machine-check-handling mech-
anism provides model-independent fault iso-
lation, which reduces the number of programs
impacted by uncorrected errors. Additionally,
it provides model-independent recording of
machine-status information. This leads to
greater machine-check-handling compatibility
between models and improves the capability
for loading and operating a program on a dif-
ferent model when a system failure occurs.

A small number of manual controls are
required for basic system operation, permitting
most operator-system interaction to take place
via a unit operating as an 1/O device and thus
reducing the possibility of operator errors.

The logical partitions made available by the
PR/SM feature allow continued reliable pro-
duction operations in one or more partitions
while new programming systems are tested in
other partitions. This is an advancement in
particular for non-VM installations.

The operational extensions and channel-
subsystem-call facility of ESA/390 improve the
ability to continue execution of application pro-
grams in the presence of system incidents
and the ability to make configuration changes
with less disruption to operations.

Chapter 1. Introducton 1-11

1-12 ESA/390 Principles of Operation

Chapter 2. Organization

Main Storage 2-2 Vector Facility 2-6

Expanded Storage 2-2 Cryptographic Facility 2-6

CPU 2-2 External Time Reference 2-6
PSW 2-3 VO . . . 2-6
General Registers 2-3 Channel Subsystem 2-6
Floating-Point Registers 2-3 Channel Paths 2-6
Floating-Point-Control (FPC) Register . . . 2-4 I/O Devices and Control Units 2-7
Control Registers 2-4 Operator Facilites 2-7
Access Registers 2-4

Logically, a system consists of main storage, one / [emml y

or more central processing units (CPUs), operator
facilities, a channel subsystem, and /O devices.
I/O devices are attached to the channel sub-
system through control units. The connection
between the channel subsystem and a control unit
is called a channel path.

A channel path employs either a parallel-
transmission protocol or a serial-transmission pro-
tocol and, accordingly, is called either a parallel or
a serial channel path. A serial channel path may
connect to a control unit through a dynamic switch
that is capable of providing different internal con-
nections between the ports of the switch.

Expanded storage may also be available in the
system, a vector or cryptographic unit may be
included in a CPU, and an external time reference
(ETR) may be connected to the system.

The physical identity of the above functions may
vary among implementations, called “models.”
Figure 2-1 depicts the logical structure of a
two-CPU multiprocessing system that includes
expanded storage, a vector unit, and a
cryptographic unit and that is connected to an
ETR.

Specific processors may differ in their internal
characteristics, the installed facilities, the number
of subchannels, channel paths, and control units
which can be attached to the channel subsystem,
the size of main and expanded storage, and the
representation of the operator facilities.

CPU -

Vector

|

Expanded Storage Main Storage

CPU
Crypto

Channel
Subsystem

Serial Channel Paths Paralle ?hanne] Paths
/

~—

Dynamic Dynamic
Switch Switch

M |
LE]
o
[=

T T T

000 000
Figure 2-1. Logical Structure of an ESA/390 System
with Two CPUs

A system viewed without regard to its I/O devices
is referred to as a configuration. All of the phys-

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999 2-1

ical equipment, whether in the configuration or not,
is referred to as the installation.

Model-dependent reconfiguration controls may be
provided to change the amount of main and
expanded storage and the number of CPUs and
channel paths in the configuration. In some
instances, the reconfiguration controls may be
used to partition a single configuration into mul-
tiple configurations. Each of the configurations so
reconfigured has the same structure, that is, main
and expanded storage, one or more CPUs, and
one or more subchannels and channel paths in
the channel subsystem.

Each configuration is isolated in that the main and
expanded storage in one configuration is not
directly addressable by the CPUs and the channel
subsystem of another configuration. It is,
however, possible for one configuration to commu-
nicate with another by means of shared /O
devices or a channel-to-channel adapter. At any
one time, the storage, CPUs, subchannels, and
channel paths connected together in a system are
referred to as being in the configuration. Each
CPU, subchannel, channel path, main-storage
location, and expanded-storage location can be in
only one configuration at a time.

Main Storage

Main storage, which is directly addressable, pro-
vides for high-speed processing of data by the
CPUs and the channel subsystem. Both data and
programs must be loaded into main storage from
input devices before they can be processed. The
amount of main storage available on the system
depends on the model, and, depending on the
model, the amount in the configuration may be
under control of model-dependent configuration
controls. The storage is available in multiples of
4K-byte blocks. At any instant, the channel sub-
system and all CPUs in the configuration have
access to the same blocks of storage and refer to
a particular block of main-storage locations by
using the same absolute address.

Main storage may include a faster-access buffer
storage, sometimes called a cache. Each CPU
may have an associated cache. The effects,
except on performance, of the physical con-
struction and the use of distinct storage media are
not observable by the program.

2-2 ESA/390 Principles of Operation

Expanded Storage

Expanded storage may be available on some
models. Expanded storage, when available, can
be accessed by all CPUs in the configuration by
means of instructions that transfer 4K-byte blocks
of data from expanded storage to main storage or
from main storage to expanded storage. These
instructions are not described. Another capability
for accessing expanded storage is described in
the definition of the MOVE PAGE instruction in

Chapter 7, “General Instructions,’ and

Chapter 10, “Control Instructions.]

Each 4K-byte block in expanded storage is
addressed by means of a 32-bit unsigned binary
integer called an expanded-storage block number.

Expanded storage is not further described.

CPU

The central processing unit (CPU) is the control-
ling center of the system. It contains the
sequencing and processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical implementation of the CPU may
differ among models, but the logical function
remains the same. The result of executing an
instruction is the same for each model, providing
that the program complies with the compatibility
rules.

The CPU, in executing instructions, can process
binary integers and floating-point numbers (binary
and hexadecimal) of fixed length, decimal integers
of variable length, and logical information of either
fixed or variable length. Processing may be in
parallel or in series; the width of the processing
elements, the multiplicity of the shifting paths, and
the degree of simultaneity in performing the dif-
ferent types of arithmetic differ from one CPU to
another without affecting the logical results.

Instructions which the CPU executes fall into
seven classes: general, decimal, floating-point-
support (FPS), binary-floating-point (BFP),
hexadecimal-floating-point (HFP), control, and 1/O
instructions. The general instructions are used in

performing binary-integer-arithmetic operations
and logical, branching, and other nonarithmetic
operations. The decimal instructions operate on
data in the decimal format. The BFP and HFP
instructions operate on data in the BFP and HFP
formats, respectively, while the FPS instructions
operate on floating-point data independent of the
format or convert it from one format to the other.
The privileged control instructions and the 1/O
instructions can be executed only when the CPU
is in the supervisor state; the semiprivileged
control instructions can be executed in the
problem state, subject to the appropriate authori-
zation mechanisms.

The CPU provides registers which are available to
programs but do not have addressable represen-
tations in main storage. They include the current
program-status word (PSW), the general registers,
the floating-point registers and floating-point-
control register, the control registers, the access
registers, the prefix register, and the registers for
the clock comparator and the CPU timer. Each
CPU in an installation provides access to a time-
of-day (TOD) clock, which may be local to that
CPU or shared with other CPUs in the installation.
The instruction operation code determines which
type of register is to be used in an operation. See
[Figure 2-2 on page 2-5 for the format of the
control, access, general, and floating-point regis-
ters.

PSW

The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned
storage location, called the old-PSW location, for
the particular class of interruption. The CPU
fetches a new PSW from a second assigned
storage location. This new PSW determines the
next program to be executed. When it has fin-
ished processing the interruption, the interrupting
program may reload the old PSW, making it again

the current PSW, so that the interrupted program
can continue.

There are six classes of interruption: external,
I/O, machine check, program, restart, and super-
visor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in real storage.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general regis-
ters may be used as base-address registers and
index registers in address arithmetic and as accu-
mulators in general arithmetic and logical opera-
tions. Each register contains 32 bits. The general
registers are identified by the numbers 0-15 and
are designated by a four-bit R field in an instruc-
tion. Some instructions provide for addressing
multiple general registers by having several R
fields. For some instructions, the use of a specific
general register is implied rather than explicitly
designated by an R field of the instruction.

For some operations, two adjacent general regis-
ters are coupled, providing a 64-bit format. In
these operations, the program must designate an
even-numbered register, which contains the left-
most (high-order) 32 bits. The next higher-
numbered register contains the rightmost
(low-order) 32 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address
and index registers in address generation. In
these cases, the registers are designated by a
four-bit B field or X field in an instruction. A value
of zero in the B or X field specifies that no base or
index is to be applied, and, thus, general register
0 cannot be designated as containing a base
address or index.

Floating-Point Registers

All floating-point instructions (FPS, BFP, and HFP)
use the same floating-point registers. When the
basic-floating-point-extensions facility is installed,
the CPU has 16 floating-point registers. The
floating-point registers are identified by the
numbers 0-15 and are designated by a four-bit R
field in floating-point instructions. Each floating-
point register is 64 bits long and can contain either
a short (32-bit) or a long (64-bit) floating-point

Chapter 2. Organizaton 2-3

operand. As shown in [Figure 2-2 on page 2-5|
pairs of floating-point registers can be used for
extended (128-bit) operands. Each of the eight
pairs is referred to by the number of the lower-
numbered register of the pair. When the basic-
floating-point-extensions facility is not installed, the
CPU has four floating-point registers numbered 0,
2,4, and 6.

Floating-Point-Control (FPC)
Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. The
FPC register is installed when the binary-floating-
point facility is installed and is described in the
section [‘Eloating-Point-Control (FPC) Register” on|

Control Registers

The CPU has 16 control registers, each having 32
bit positions. The bit positions in the registers are
assigned to particular facilities in the system, such
as program-event recording, and are used either
to specify that an operation can take place or to
furnish special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE
CONTROL. Multiple control registers can be
addressed by these instructions.

2-4 ESA/390 Principles of Operation

Access Registers

The CPU has 16 access registers numbered 0-15.
An access register consists of 32 bit positions
containing an indirect specification (not described
here in detail) of a segment-table designation. A
segment-table designation is a parameter used by
the dynamic-address-translation (DAT) mechanism
to translate references to a corresponding address
space. When the CPU is in a mode called the
access-register mode (controlled by bits in the
PSW), an instruction B field, used to specify a
logical address for a storage-operand reference,
designates an access register, and the segment-
table designation specified by the access register
is used by DAT for the reference being made. For
some instructions, an R field is used instead of a
B field. Instructions are provided for loading and
storing the contents of the access registers and
for moving the contents of one access register to
another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access reg-
ister 0 always designates the current instruction
space. When one of access registers 1-15 is
used to designate an address space, the CPU
determines which address space is designated by
translating the contents of the access register.
When access register 0 is used to designate an
address space, the CPU treats the access register
as designating the current instruction space, and it
does not examine the actual contents of the
access register. Therefore, the 16 access regis-
ters can designate, at any one time, the current
instruction space and a maximum of 15 other
spaces.

R Field Control Access General Floating-Point

and Registers Registers Registers Registers
Register

Number |32 bits—»| |<32 bits—| | €32 bits—| | «—64 bits—>|
oo o | || | | |
ooor 1| || |+ || |
soto 2| || | rl |+ |
it 3 | || |~ | |
o160+ | || |l |l |
oier 5 | || |+ ||| |
o110 6 | || | |~ |
ot 7| || |+ | |
o0 s | || | rl | rl |
o1 9| || |~] |
o0 16| || |l |+ |
o 1| || |+ | |
e 12| || | | |
oL 1| || |+ || |
s 14| || | rl |+ |
s | || |~ | |

Note: The arrows indicate that the two registers may be coupled as a double-register pair,
designated by specifying the lower-numbered register in the R field. For example, the floating-point
register pair 13 and 15 is designated by 1101 binary in the R field.

Figure 2-2. Control, Access, General, and Floating-Point Registers

Chapter 2. Organization

2-5

Vector Facility

Depending on the model, a vector facility may be
provided as an extension of the CPU. When the
vector facility is provided on a CPU, it functions as
an integral part of that CPU. The functions of the
vector facility and its registers are described in the
publication I1BM Enterprise Systems
Architecture/390 Vector Operations, SA22-7207.

Cryptographic Facility

Depending on the model, an integrated
cryptographic facility may be provided as an
extension of the CPU. When the cryptographic
facility is provided on a CPU, it functions as an
integral part of that CPU. A summary of the bene-
fits of the cryptographic facility is given in
lights of ESA/390” on page 1-1f the facility is
otherwise not described.

External Time Reference

Depending on the model, an external time refer-
ence (ETR) may be connected to the configura-
tion. A summary of the benefits of the ETR is
given in [‘Highlights of ESA/390” on page 1-1} the
facility is otherwise not described.

1/O

Input/output (1/O) operations involve the transfer of
information between main storage and an 1/O
device. 1/O devices and their control units attach
to the channel subsystem, which controls this data
transfer.

Channel Subsystem

The channel subsystem directs the flow of infor-
mation between I/O devices and main storage. It
relieves CPUs of the task of communicating
directly with 1/0O devices and permits data proc-
essing to proceed concurrently with 1/0O proc-
essing. The channel subsystem uses one or more
channel paths as the communication link in man-
aging the flow of information to or from 1/O
devices. As part of /O processing, the channel
subsystem also performs the path-management
function of testing for channel-path availability,
selecting an available channel path, and initiating
execution of the operation with the 1/O device.
Within the channel subsystem are subchannels.

2-6 ESA/390 Principles of Operation

One subchannel is provided for and dedicated to
each /0O device accessible to the channel sub-
system. Each subchannel contains storage for
information concerning the associated /0 device
and its attachment to the channel subsystem. The
subchannel also provides storage for information
concerning /O operations and other functions
involving the associated /0O device. Information
contained in the subchannel can be accessed by
CPUs using I/O instructions as well as by the
channel subsystem and serves as the means of
communication between any CPU and the channel
subsystem concerning the associated 1/0 device.
The actual number of subchannels provided
depends on the model and the configuration; the
maximum number of subchannels is 65,536.

Channel Paths

I/O devices are attached through control units to
the channel subsystem via channel paths. Control
units may be attached to the channel subsystem
via more than one channel path, and an /O
device may be attached to more than one control
unit. In all, an individual /O device may be acces-
sible to a channel subsystem by as many as eight
different channel paths, depending on the model
and the configuration. The total number of
channel paths provided by a channel subsystem
depends on the model and the configuration; the
maximum number of channel paths is 256.

A channel path can use one of two types of com-
munication links:

e System/360 and System/370 1/O interface,
called the parallel-l/O interface; the channel
path is called a parallel channel path

¢ ESCON I/O interface, called the serial-1/O
interface; the channel path is called a serial
channel path

Each parallel-1/O interface consists of a number of
electrical signal lines between the channel sub-
system and one or more control units. Eight
control units can share a single parallel-I/O inter-
face. Up to 256 I/O devices can be addressed on
a single parallel-l/O interface. The parallel-l/O
interface is described in the publication /IBM
System/360 and System/370 I/O Interface
Channel to Control Unit Original Equipment Man-
ufacturers' Information, GA22-6974.

Each serial-1/O interface consists of two optical-
fiber conductors between any two of a channel

subsystem, a dynamic switch, and a control unit.
A dynamic switch can be connected by means of
multiple serial-1/O interfaces to either the same or
different channel subsystems and to multiple
control units. The number of control units which
can be connected on one channel path depends
on the channel-subsystem and dynamic-switch
capabilities. Up to 256 devices can be attached to
each control unit that uses the serial-I/O interface,
depending on the control unit. The serial-1/O inter-
face is described in the publication ESA/390
ESCON I/O Interface, SA22-7202.

I/O Devices and Control Units

I/O devices include such equipment as printers,
magnetic-tape units, direct-access-storage
devices, displays, keyboards, communications
controllers, teleprocessing devices, and sensor-
based equipment. Many I/O devices function with
an external medium, such as paper or magnetic
tape. Other /O devices handle only electrical
signals, such as those found in displays and com-

munications networks. In all cases, 1/O-device
operation is regulated by a control unit that pro-
vides the logical and buffering capabilities neces-
sary to operate the associated I/O device. From
the programming point of view, most control-unit
functions merge with 1/O-device functions. The
control-unit function may be housed with the I/O
device or in the CPU, or a separate control unit
may be used.

Operator Facilities

The operator facilities provide the functions neces-
sary for operator control of the machine. Associ-
ated with the operator facilties may be an
operator-console device, which may also be used
as an |/O device for communicating with the
program.

The main functions provided by the operator facili-

ties include resetting, clearing, initial program
loading, start, stop, alter, and display.

Chapter 2. Organization 2-7

2-8 ESA/390 Principles of Operation

Chapter 3. Storage

Storage Addressing 3-2 ASN-Second-Table Lookup 3-23
Information Formats 3-2 Recognition of Exceptions during ASN
Integral Boundaries 3-3 Translation 3-23

Address Types and Formats 3-3 ASN Authorization 3-23
Address Types 3-3 ASN-Authorization Controls 3-24

Absolute Address 3-4 Control Register4 3-24
Real Address 3-4 ASN-Second-Table Entry 3-24
Virtual Address 3-4 Authority-Table Entries 3-24
Primary Virtual Address 3-4 ASN-Authorization Process 3-24
Secondary Virtual Address 3-4 Authority-Table Lookup 3-25
AR-Specified Virtual Address 3-4 Recognition of Exceptions during ASN
Home Virtual Address 34 Authorization 3-26
Logical Address 3-4 Dynamic Address Translation 3-26
Instruction Address 3-5 Translation Control 3-27
Effective Address 3-5 Translation Modes 3-28
Address Size and Wraparound 3-5 Control Register 0 3-28
Address Wraparound 3-5 Control Register 2 3-28

StorageKey 3-8 Control Register 7 3-29

Protection 3-8 Control Register 13 3-29
Key-Controlled Protection 3-9 Translation Tables 3-30

Storage-Protection-Override Control . . 3-10 Segment-Table Entries 3-30
Fetch-Protection-Override Control . . . 3-11 Page-Table Entries 3-31
Access-List-Controlled Protection 3-11 Summary of Segment-Table and
Page Protection 3-11 Page-Table Sizes 3-31
Low-Address Protection 3-11 Translation Process 3-31
Suppression on Protection 3-12 Effective Segment-Table Designation . 3-32

Reference Recording 3-14 Inspection of Control Register 0 3-34

Change Recording 3-14 Segment-Table Lookup 3-34

Prefixing 3-14 Page-Table Lookup 3-35

Address Spaces 3-16 Formation of the Real Address 3-35

Changing to Different Address Spaces . 3-17 Recognition of Exceptions during
Address-Space Number 3-17 Translation 3-35

ASN Translation 3-18 Translation-Lookaside Buffer 3-35

ASN-Translation Controls 3-18 TLB Structure 3-36
Control Register 14 3-18 Formation of TLB Entries 3-36
Control Register0 3-19 Use of TLB Entries 3-37

ASN-Translation Tables 3-19 Modification of Translation Tables . . . 3-38
ASN-First-Table Entries 3-19 Address Summary 3-40
ASN-Second-Table Entries 3-19 Addresses Translated 3-40

ASN-Translation Process 3-21 Handling of Addresses 3-40
ASN-First-Table Lookup 3-22 Assigned Storage Locations 3-43

This chapter discusses the representation of infor- translated to another type of address. A list of

mation in main storage, as well as addressing,
protection, and reference and change recording.
The aspects of addressing which are covered
include the format of addresses, the concept of
address spaces, the various types of addresses,
and the manner in which one type of address is

permanently assigned storage locations appears
at the end of the chapter.

Main storage provides the system with directly
addressable fast-access storage of data. Both
data and programs must be loaded into main

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999 3-1

storage (from input devices) before they can be
processed.

Main storage may include one or more smaller
faster-access buffer storages, sometimes called
caches. A cache is usually physically associated
with a CPU or an 1/O processor. The effects,
except on performance, of the physical con-
struction and use of distinct storage media are not
observable by the program.

Fetching and storing of data by a CPU are not
affected by any concurrent channel-subsystem
activity or by a concurrent reference to the same
storage location by another CPU. When concur-
rent requests to a main-storage location occur,
access normally is granted in a sequence deter-
mined by the system. If a reference changes the
contents of the location, any subsequent storage
fetches obtain the new contents.

Main storage may be volatile or nonvolatile. If it is
volatile, the contents of main storage are not pre-
served when power is turned off. If it is nonvola-
tile, turning power off and then back on does not
affect the contents of main storage, provided all
CPUs are in the stopped state and no references
are made to main storage when power is being
turned off. In both types of main storage, the con-
tents of the storage key are not necessarily pre-
served when the power for main storage is turned
off.

Note: Because most references in this publica-
tion apply to virtual storage, the abbreviated term
“storage” is often used in place of “virtual storage.”
The term “storage” may also be used in place of
“main storage,” “absolute storage,” or ‘“real
storage” when the meaning is clear. The terms
“main storage” and “absolute storage” are used to
describe storage which is addressable by means
of an absolute address. The terms describe fast-
access storage, as opposed to auxiliary storage,
such as provided by direct-access storage
devices. “Real storage” is synonymous with
“absolute storage” except for the effects of pre-
fixing.

3-2 ESA/390 Principles of Operation

Storage Addressing

Storage is viewed as a long horizontal string of
bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of
bits is subdivided into units of eight bits. An
eight-bit unit is called a byte, which is the basic
building block of all information formats.

Each byte location in storage is identified by a
unigue nonnegative integer, which is the address
of that byte location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left and pro-
ceeding in a left-to-right sequence. Addresses are
either 24-bit or 31-bit unsigned binary integers and
are described in ['Address Size and Wraparound’|
on page 3-5

Information Formats

Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise speci-
fied, a group of bytes in storage is addressed by
the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly
specified by the operation to be performed. When
used in a CPU operation, a group of bytes is
called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit
numbers are not storage addresses, however.
Only bytes can be addressed. To operate on indi-
vidual bits of a byte in storage, it is necessary to
access the entire byte.

The bits in a byte are numbered 0 through 7, from
left to right.

The bits in an address are numbered 8 through 31
for 24-bit addresses and 1 through 31 for 31-bit
addresses. Within any other fixed-length format of
multiple bytes, the bits making up the format are
consecutively numbered starting from O.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of
bytes. Such check bits are generated automat-
ically by the machine and cannot be directly con-
trolled by the program. References in this

publication to the length of data fields and regis-
ters exclude mention of the associated check bits.
All storage capacities are expressed in number of
bytes.

When the length of a storage-operand field is
implied by the operation code of an instruction, the
field is said to have a fixed length, which can be
one, two, four, or eight bytes. Larger fields may
be implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to
have a variable length. Variable-length operands
can vary in length by increments of one byte.

When information is placed in storage, the con-
tents of only those byte locations are replaced that
are included in the designated field, even though
the width of the physical path to storage may be
greater than the length of the field being stored.

Integral Boundaries

Certain units of information must be on an integral
boundary in storage. A boundary is called integral
for a unit of information when its storage address
is a multiple of the length of the unit in bytes.
Special names are given to fields of two, four, and
eight bytes on an integral boundary. A halfword is
a group of two consecutive bytes on a two-byte
boundary and is the basic building block of
instructions. A word is a group of four consec-
utive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes
on an eight-byte boundary. (See Figure 3-1.)

When storage addresses designate halfwords,
words, and doublewords, the binary representation
of the address contains one, two, or three right-
most zero bits, respectively.

Instructions must be on two-byte integral bounda-
ries, and CCWs, IDAWSs, and the storage oper-
ands of certain instructions must be on other
integral boundaries. The storage operands of
most instructions do not have boundary-alignment
requirements.

- — Storage Addresses

Bytes 0|12 |3(4|5|6]|7]|8
T T T T T
Halfwords 0 | 2 | 4 | 6 | 8 |
T T T T T T T
Words 0 4 8
l l l l l l l
T T T T T T T T
Doublewords | 0 8
L L L L L L L L

Figure 3-1. Integral Boundaries with

Addresses

Storage

Programming Note: For fixed-field-length opera-
tions with field lengths that are a power of 2, sig-
nificant performance degradation is possible when
storage operands are not positioned at addresses
that are integral multiples of the operand length.
To improve performance, frequently used storage
operands should be aligned on integral bounda-
ries.

Address Types and Formats

Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: abso-
lute, real, and virtual. The addresses are distin-
guished on the basis of the transformations that
are applied to the address during a storage
access. Address translation converts virtual to
real, and prefixing converts real to absolute. In
addition to the three basic address types, addi-
tional types are defined which are treated as one
or another of the three basic types, depending on
the instruction and the current mode.

Chapter 3. Storage 3-3

Absolute Address
An absolute address is the address assigned to a
main-storage location. An absolute address is
used for a storage access without any transforma-
tions performed on it.

The channel subsystem and all CPUs in the con-
figuration refer to a shared main-storage location
by using the same absolute address. Available
main storage is usually assigned contiguous abso-
lute addresses starting at 0, and the addresses
are always assigned in complete 4K-byte blocks
on integral boundaries. An exception is recog-
nized when an attempt is made to use an absolute
address in a block which has not been assigned
to physical locations. On some models, storage-
reconfiguration controls may be provided which
permit the operator to change the correspondence
between absolute addresses and physical
locations. However, at any one time, a physical
location is not associated with more than one
absolute address.

Storage consisting of byte locations sequenced
according to their absolute addresses is referred
to as absolute storage.

Real Address

A real address identifies a location in real storage.
When a real address is used for an access to
main storage, it is converted, by means of pre-
fixing, to an absolute address.

At any instant there is one real-address to
absolute-address mapping for each CPU in the
configuration. When a real address is used by a
CPU to access main storage, it is converted to an
absolute address by prefixing. The particular
transformation is defined by the value in the prefix
register for the CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as
real storage.

Virtual Address

A virtual address identifies a location in virtual
storage. When a virtual address is used for an
access to main storage, it is translated by means
of dynamic address translation to a real address,
which is then further converted by prefixing to an
absolute address.

3-4 ESA/390 Principles of Operation

Primary Virtual Address

A primary virtual address is a virtual address
which is to be translated by means of the primary
segment-table designation. Logical addresses are
treated as primary virtual addresses when in the
primary-space mode. Instruction addresses are
treated as primary virtual addresses when in the
primary-space mode, secondary-space mode, or
access-register mode. The first-operand address
of MOVE TO PRIMARY and the second-operand
address of MOVE TO SECONDARY are always
treated as primary virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual address
which is to be translated by means of the sec-
ondary segment-table designation. Logical
addresses are treated as secondary virtual
addresses when in the secondary-space mode.
The second-operand address of MOVE TO
PRIMARY and the first-operand address of MOVE
TO SECONDARY are always treated as sec-
ondary virtual addresses.

AR-Specified Virtual Address

An AR-specified virtual address is a virtual
address which is to be translated by means of an
access-register-specified segment-table desig-
nation. Logical addresses are treated as
AR-specified addresses when in the access-
register mode.

Home Virtual Address

A home virtual address is a virtual address which
is to be translated by means of the home
segment-table designation. Logical addresses
and instruction addresses are treated as home
virtual addresses when in the home-space mode.

Logical Address

Except where otherwise specified, the storage-
operand addresses for most instructions are
logical addresses. Logical addresses are treated
as real addresses in the real mode, as primary
virtual addresses in the primary-space mode, as
secondary virtual addresses in the secondary-
space mode, as AR-specified virtual addresses in
the access-register mode, and as home virtual
addresses in the home-space mode. Some
instructions have storage-operand addresses or
storage accesses associated with the instruction
which do not follow the rules for logical addresses.

In all such cases, the instruction definition con-
tains a definition of the type of address.

Instruction Address

Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the
real mode, as primary virtual addresses in the
primary-space mode, secondary-space mode, or
access-register mode, and as home Vvirtual
addresses in the home-space mode. The instruc-
tion address in the current PSW and the target
address of EXECUTE are instruction addresses.

Effective Address

In some situations, it is convenient to use the term
“effective address.” An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing is per-
formed. An effective address may be specified
directly in a register or may result from address
arithmetic. Address arithmetic is the addition of
the base and displacement or of the base, index,
and displacement.

Address Size and Wraparound

Two sizes of addresses are provided: 24-bit and
31-bit. A 24-bit address can accommodate a
maximum of 16,777,216 (16M) bytes; with a 31-bit
address, 2,147,483,648 (2G) bytes of storage can
be addressed.

The bits of the address are numbered 8-31 and
1-31, respectively, corresponding to the numbering
of base-address and index bits in a general reg-
ister:

24-Bit Address

31-Bit Address

01 31

A 24-bit virtual address is expanded to 31 bits by
appending seven zeros on the left before it is
translated by means of the DAT process, and a
24-bit real address is similarly expanded to 31 bits
before it is transformed by prefixing. A 24-bit
absolute address is expanded to 31 bits before
main storage is accessed. Thus, the 24-bit
address always designates the first 16M-byte

block of the 2G-byte storage addressable by a
31-bit address.

Unless specifically stated to the contrary, the fol-
lowing definition applies in this publication: when-
ever the machine generates and provides to the
program an address, a 31-bit value imbedded in a
32-bit field is made available (placed in storage or
loaded into a register). For 24-bit addresses, bits
0-7 are set to zeros, and the address appears in
bit positions 8-31; for 31-bit addresses, bit 0 is set
to zero, and the address appears in bit positions
1-31.

The size of effective addresses is controlled by bit
32 of the PSW, the addressing-mode bit. When
the bit is zero, the CPU is in the 24-bit addressing
mode, and 24-bit operand and instruction effective
addresses are specified. When the bit is one, the
CPU is in the 31-bit addressing mode, and 31-bit
operand and instruction effective addresses are
specified (see [‘Address Generation” on page 5-7).

The size of the real addresses vyielded by the
ASN-translation, PC-number-translation, ~ASN-
authorization, access-register translation, and
tracing processes, and the real (or absolute)
addresses yielded by the DAT process, is always
31 bits.

The size of the data address in a CCW is under
control of the format-control bit in the operation-
request block designated by a START SUB-
CHANNEL instruction. The CCWs with 24-bit and
31-bit addresses are called format-0 and format-1
CCWs, respectively. Format-0 and format-1
CCWs are described in |Chapter 15, “Basic I/0O|

Address Wraparound

The CPU performs address generation when it
forms an operand or instruction address or when it
generates the address of a table entry from the
appropriate table origin and index. It also per-
forms address generation when it increments an
address to access successive bytes of a field.
Similarly, the channel subsystem performs
address generation when it increments an address
(1) to fetch a CCW, (2) to fetch an IDAW, (3) to
transfer data, or (4) to compute the address of an
I/O measurement block.

When, during the generation of the address, an
address is obtained that exceeds the value

Chapter 3. Storage 3-5

allowed for the address size (224 - 1 or 231 - 1),
one of the following two actions is taken:

1. The carry out of the high-order bit position of
the address is ignored. This handling of an
address of excessive size is called
wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address 0 appears
to follow the maximum allowable address.
Address arithmetic and wraparound occur before
transformation, if any, of the address by DAT or
prefixing.

Addresses generated by the CPU that may be
virtual addresses always wrap. Wraparound also

3-6 ESA/390 Principles of Operation

occurs when the linkage-stack-entry address in
control register 15 is decremented below 0 by
PROGRAM RETURN. For CPU table entries that
are addressed by real or absolute addresses, it is
unpredictable whether the address wraps or an
addressing exception is recognized.

For channel-program execution, when the gener-
ated address exceeds the value for the address
size (or, for the read-backward command is decre-
mented below 0), an I/O program-check condition
is recognized.

[Figure 3-2 on page 3-7|identifies what limit values
apply to the generation of different addresses and
how addresses are handled when they exceed the
allowed value.

Handling when

Address| Address Would
Address Generation for Type Wrap
Instructions and operands when AM is zero L,I,R,V W24
Successive bytes of instructions and operands |[I,L,V? w24
when AM is zero
Instructions and operands when AM is one L,I,R,V W31
Successive bytes of instructions and operands I,L,V? W31
when AM is one
DAT-table entries when used for implicit A or R2 X31
translation or LRA
ASN-second-table, authority-table (during ASN R X31
authorization), linkage-table, entry-table,
and PCF-entry-table entries
Authority-table (during access-register A or R2 X31
translation) and access-list entries
Linkage-stack entry) W31
1/0 measurement block A P31
For a channel program with format-0 CCWs:
Successive CCWs A P24
Successive IDAWs A P24
Successive bytes of I/0 data (without IDAWS) A P24
Successive bytes of I/0 data (with IDAWs) A P31
For a channel program with format-1 CCWs:
Successive CCWs A P31
Successive IDAWs A P31
Successive bytes of I/0 data (without IDAWs) A P31
Successive bytes of I/0 data (with IDAWs) A P31

Figure 3-2 (Part 1 of 2). Address Wraparound

Chapter 3. Storage

3-7

Explanation:

A Absolute address.

AM Addressing-mode bit in the PSW.
I Instruction address.

L Logical address.

R Real address.
v Virtual address.

1 Real addresses do not apply in this case since the instructions
which designate operands by means of real addresses cannot des-
ignate operands that cross boundaries 224 and 231,

2 It is unpredictable whether the address is absolute or real.

P24 An I/0 program-check condition is recognized when the address
exceeds 224 - 1 or is decremented below zero.

P31 An I/0 program-check condition is recognized when the address
exceeds 231 - 1 or is decremented below zero.

W24 Wrap to location 0 after Tocation 224 - 1 and vice versa.

W31 Wrap to Tocation 0 after location 23! - 1 and vice versa.

X31 When the address exceeds 23! - 1, it is unpredictable whether
the address wraps to location 0 after location 231 - 1 or
whether an addressing exception is recognized.

Figure 3-2 (Part 2 of 2). Address Wraparound

Storage Key

A storage key is associated with each 4K-byte
block of storage that is available in the configura-
tion. The storage key has the following format:

ACC |F(R]|C

0 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC): If a reference is
subject to key-controlled protection, the four
access-control bits, bits 0-3, are matched with the
four-bit access key when information is stored, or
when information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F): If a reference is
subject to key-controlled protection, the fetch-
protection bit, bit 4, controls whether key-
controlled protection applies to fetch-type
references: a zero indicates that only store-type
references are monitored and that fetching with
any access key is permitted; a one indicates that
key-controlled protection applies to both fetching
and storing. No distinction is made between the
fetching of instructions and of operands.

3-8 ESA/390 Principles of Operation

Reference Bit (R): The reference bit, bit 5,
normally is set to one each time a location in the
corresponding storage block is referred to either
for storing or for fetching of information.

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE
KEY EXTENDED and inspected by INSERT
STORAGE KEY EXTENDED. Additionally, the
instruction RESET REFERENCE BIT EXTENDED
provides a means of inspecting the reference and
change bits and of setting the reference bit to
zero. Bits 0-4 of the storage key are inspected by
the INSERT VIRTUAL STORAGE KEY instruction.
The contents of the storage key are unpredictable
during and after the execution of the usability test
of the TEST BLOCK instruction.

Protection

Four protection facilities are provided to protect
the contents of main storage from destruction or
misuse by programs that contain errors or are
unauthorized: key-controlled protection, access-
list-controlled protection, page protection, and low-
address protection. The protection facilities are
applied independently; access to main storage is

only permitted when none of the facilities prohibit
the access.

Key-controlled protection affords protection against
improper storing or against both improper storing
and fetching, but not against improper fetching
alone.

Key-Controlled Protection

When key-controlled protection applies to a
storage access, a store is permitted only when the
storage key matches the access key associated
with the request for storage access; a fetch is per-
mitted when the keys match or when the fetch-
protection bit of the storage key is zero.

The keys are said to match when the four access-
control bits of the storage key are equal to the
access key, or when the access key is zero.

The protection action is summarized in Figure 3-3.

Is Access to
Storage Permitted?

Conditions

Fetch-Protection
Bit of

Storage Key Key Relation| Fetch Store

0 Match Yes Yes

0 Mismatch Yes No

1 Match Yes Yes

1 Mismatch No No
Explanation:

Match The four access-control bits of the
storage key are equal to the access
key, or the access key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching,
the information is not made available
to the program; on storing, the con-
tents of the storage location are not
changed.

Figure 3-3. Summary of Protection Action

When the access to storage is initiated by the
CPU and key-controlled protection applies, the
PSW key is the access key, except that the
access key is specified in a general register for
the first operand of MOVE TO SECONDARY and
MOVE WITH DESTINATION KEY and for the
second operand of MOVE TO PRIMARY, MOVE
WITH KEY, and MOVE WITH SOURCE KEY.
The PSW key occupies bit positions 8-11 of the
current PSW.

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the
access key. The subchannel key for a channel
program is specified in the operation-request block
(ORB). When, for purposes of channel-subsystem
monitoring, an access to the measurement block
is made, the measurement-block key is the access
key. The measurement-block key is specified by
the SET CHANNEL MONITOR instruction.

When a CPU access is prohibited because of key-
controlled protection, the execution of the instruc-
tion is terminated, and a program interruption for a
protection exception takes place. However, if the
suppression-on-protection facility is installed, the
execution of the instruction may be suppressed.
When a channel-program access is prohibited, the
start function is ended, and the protection-check
condition is indicated in the associated
interruption-response block (IRB). When a
measurement-block access is prohibited, the 1/O
measurement-block protection-check condition is
indicated.

When a store access is prohibited because of key-
controlled protection, the contents of the protected
location remain unchanged. When a fetch access
is prohibited, the protected information is not
loaded into a register, moved to another storage
location, or provided to an 1/O device. For a pro-
hibited instruction fetch, the instruction is sup-
pressed, and an arbitrary instruction-length code is
indicated.

Key-controlled protection is independent of
whether the CPU is in the problem or the super-
visor state and, except as described below, does
not depend on the type of CPU instruction or
channel-command word being executed.

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by
the program and that are used by the CPU to
store or fetch information are subject to key-
controlled protection.

Key-controlled protection does not apply when the
storage-protection-override control is one and the
value of the four access-control bits of the storage
key is 9. Key-controlled protection for fetches
may or may not apply when the fetch-protection-

Chapter 3. Storage 3-9

override control is one, depending on the effective
address and the private-space control.

Accesses to the second operand of TEST BLOCK
are not subject to key-controlled protection.

All storage accesses by the channel subsystem to
access the /O measurement block, or by a
channel program to fetch a CCW or IDAW or to
access a data area designated during the exe-
cution of a CCW, are subject to key-controlled
protection. However, if a CCW, an IDAW, or
output data is prefetched, a protection check is not
indicated until the CCW or IDAW is due to take
control or until the data is due to be written.

Key-controlled protection is not applied to
accesses that are implicitly made for any of such
sequences as:

¢ An interruption

¢ CPU logout

¢ Fetching of table entries for access-register
translation, dynamic-address translation,
PC-number translation, ASN translation, or
ASN authorization

e Tracing

¢ A store-status function

e Storing in real locations 184-191 when TEST
PENDING INTERRUPTION has an operand
address of zero

e Initial program loading

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the
program explicitly designates these locations, they
are subject to protection.

Storage-Protection-Override Control

Bit 7 of control register O is the storage-protection-
override control. When the storage-protection-
override facility is installed and this bit is one,
storage-protection override is active. When the
storage-protection-override facility is not installed
or this bit is zero, storage-protection override is
inactive. When storage-protection override is
active, key-controlled storage protection is ignored
for storage locations having an associated
storage-key value of 9. When storage-protection
override is inactive, no special action is taken for a
storage-key value of 9.

3-10 ESA/390 Principles of Operation

Storage-protection override applies to instruction
fetch and to the fetch and store accesses of
instructions whose operand addresses are logical,
virtual, or real. It does not apply to accesses
made for the purpose of channel-program exe-
cution or for the purpose of channel-subsystem
monitoring.

Storage-protection override applies to the oper-
ands of MOVE PAGE even when the operand is
in expanded storage.

Storage-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Notes:

1. The storage-protection-override facility can be
used to improve reliability in the case when a
possibly erroneous application program is exe-
cuted in conjunction with a reliable subsystem,
provided that the application program needs to
access only a portion of the storage accessed
by the subsystem. The technique for doing
this is as follows. The storage accessed by
the application program is given storage key
9. The storage accessed by only the sub-
system is given some other nonzero storage
key, for example, key 8. The application is
executed with PSW key 9. The subsystem is
executed with PSW key 8 (in this example).
As a result, the subsystem can access both
the key-8 and the key-9 storage, while the
application program can access only the key-9
storage.

2. Storage-protection override affects the
accesses to storage made by the CPU and
also affects the result set by TEST PRO-
TECTION. However, those instructions which,
in the problem state, test the PSW-key mask
to determine if a particular key value may be
used are not affected by whether storage-
protection override is active. These
instructions include, among others, MOVE
WITH KEY and SET PSW KEY FROM
ADDRESS. To permit these instructions to
use an access key of 9 in the problem state,
bit 9 of the PSW-key mask must be one.

Fetch-Protection-Override Control

Bit 6 of control register O is the fetch-protection-
override control. When the bit is one, fetch pro-
tection is ignored for locations at effective
addresses 0-2047. An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing.
However, fetch protection is not ignored if the
effective address is subject to dynamic address
translation and the private-space control, bit 23, is
one in the segment-table designation used in the
translation.

Fetch-protection override applies to instruction
fetch and to the fetch accesses of instructions
whose operand addresses are logical, virtual, or
real. It does not apply to fetch accesses made for
the purpose of channel-program execution or for
the purpose of channel-subsystem monitoring.
When this bit is set to zero, fetch protection of
locations at effective addresses 0-2047 is deter-
mined by the state of the fetch-protection bit of the
storage key associated with those locations.

Fetch-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Note: The fetch-protection-
override control allows fetch protection of locations
at addresses 2048-4095 along with no fetch pro-
tection of locations at addresses 0-2047.

Access-List-Controlled Protection

In the access-register mode, bit 6 of the access-
list entry, the fetch-only bit, controls which types of
operand references are permitted to the address
space specified by the access-list entry. When
the entry is used in the access-register-translation
part of a reference and bit 6 is zero, both fetch-
type and store-type references are permitted;
when bit 6 is one, only fetch-type references are
permitted, and an attempt to store causes a pro-
tection exception to be recognized and the exe-
cution of the instruction to be suppressed.

The fetch-only bit is included in the ALB access-
list entry. A change to the fetch-only bit in an
access-list entry in main storage does not neces-
sarily have an immediate, if any, effect on whether
a protection exception is recognized. However,
this change to the bit will have an effect imme-
diately after PURGE ALB is executed.

TEST PROTECTION takes into consideration
access-list-controlled protection when the CPU is
in the access-register mode. A violation of
access-list-controlled protection causes condition
code 1 to be set, except that it does not prevent
condition code 2 or 3 from being set when the
conditions for those codes are satisfied.

Access-list-controlled protection does not affect
LOAD REAL ADDRESS.

Programming Note: A violation of access-list-
controlled protection always causes suppression.
A violation of any of the other protection types
may cause termination.

Page Protection

The page-protection facility controls access to
virtual storage by using the page-protection bit in
each page-table entry. It provides protection
against improper storing.

The page-protection bit, bit 22 of the page-table
entry, controls whether storing is allowed into the
corresponding 4K-byte page. When the bit is
zero, both fetching and storing are permitted;
when the bit is one, only fetching is permitted.
When an attempt is made to store into a protected
page, the contents of the page remain unchanged,
the execution of the instruction is terminated, and
a program interruption for protection takes place.
However, if the suppression-on-protection facility
is installed, the execution of the instruction is sup-
pressed.

Page protection applies to all store-type refer-
ences that use a virtual address.

Low-Address Protection

The low-address-protection facility provides pro-
tection against the destruction of main-storage
information used by the CPU during interruption
processing. This is accomplished by prohibiting
instructions from storing with effective addresses
in the range 0 through 511. The range criterion is
applied before address transformation, if any, of
the address by dynamic address translation or
prefixing. However, the range criterion is not
applied, with the result that low-address protection
does not apply, if the effective address is subject
to dynamic address translation and the private-
space control, bit 23, is one in the segment-table
designation used in the translation. Low-address

Chapter 3. Storage 3-11

protection does not apply if the segment-table
designation to be used is not available due to
another type of exception.

Low-address protection is under control of bit 3 of
control register 0, the low-address-protection-
control bit. When the bit is zero, low-address pro-
tection is off, when the bit is one, low-address
protection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, the execution of the instruction
is terminated, and a program interruption for a
protection exception takes place. However, if the
suppression-on-protection facility is installed, the
execution of the instruction may be suppressed.

Any attempt by the program to store by using
effective addresses in the range 0 through 511 is
subject to low-address protection. Low-address
protection is applied to the store accesses of
instructions whose operand addresses are logical,
virtual, or real. Low-address protection is also
applied to the trace table.

Low-address protection is not applied to accesses
made by the CPU or the channel subsystem for
such sequences as interruptions, CPU logout, the
storing of the I/O-interruption code in real locations
184-191 by TEST PENDING INTERRUPTION,
and the initial-program-loading and store-status
functions, nor is it applied to data stores during 1/O
data transfer. However, explicit stores by a
program at any of these locations are subject to
low-address protection.

Programming Notes:

1. Low-address protection and key-controlled
protection apply to the same store accesses,
except that:

a. Low-address protection does not apply to
storing performed by the channel sub-
system, whereas key-controlled protection
does.

b. Key-controlled protection does not apply
to tracing, the second operand of TEST
BLOCK, or instructions that operate spe-

cifically on the linkage stack, whereas low-
address protection does.

2. Because fetch-protection override and low-
address protection do not apply to an address
space for which the private-space control is
one in the segment-table designation,
locations 0-2047 in the address space are
usable the same as the other locations in the
space.

Suppression on Protection

If the suppression-on-protection facility is installed,
then, during a program interruption due to a pro-
tection exception, either a one or a zero is stored
in bit position 29 of real locations 144-147. The
storing of a one in bit position 29 indicates that:

e The unit of operation or instruction execution
during which the exception was recognized
was suppressed, except that, if the instruction
execution would set the condition code if com-
pleted normally, the condition code is unpre-
dictable.

e Bit positions 1-19 of real locations 144-147
contain bits 1-19 of the effective address that
caused the exception. The effective address
is the address which exists before any trans-
formation by dynamic address translation
(DAT) or prefixing. If the effective address
was to be translated by DAT, bit positions 30
and 31 of real locations 144-147, and real
location 160, contain the same information as
is stored during a program interruption due to
a page-translation exception—this information
identifies the address space containing the
protected address. If the effective address
was not to be translated by DAT, the contents
of bit positions 30 and 31 of real locations
144-147, and the contents of real location
160, are unpredictable. The contents of bit
positions 0 and 20-28 of real locations
144-147 are always unpredictable.

e |f an additional facility named the virtual-
address enhancement of suppression on pro-
tection is installed?, and if DAT was on, as
indicated by the DAT-mode bit in the program
old PSW, the effective address in real
locations 144-147 is always one that was to

1 The virtual-address enhancement is always installed along with the suppression-on-protection facility except that, on 9121 models,
the virtual-address enhancement is installed only if SEC C35954 is installed.

3-12 ESA/390 Principles of Operation

be translated by DAT. (Bit 29 is set to zero if
DAT was on but the effective address was not
to be translated by DAT because it is a real
address.)

Bit 29 being zero indicates that the operation was
either suppressed or terminated and that the con-
tents of the remainder of real locations 144-147,
and of real location 160, are unpredictable.

Bit 29 is set to one if the protection exception was
due to access-list-controlled protection or page
protection. Bit 29 may be set to one if the pro-
tection exception was due to low-address pro-
tection or key-controlled protection.

If a protection-exception condition exists due to
either access-list-controlled protection or page pro-
tection but also exists due to either low-address
protection or key-controlled protection, it is unpre-
dictable for which reason the protection exception
is recognized, and it is unpredictable whether bit
29 is set to zero or one.

Programming Notes:

1. The suppression-on-protection facility is useful
in performing the AIX/ESA copy-on-write func-
tion, in which AIX/ESA causes the same page
of different address spaces to map to a single
page frame of real storage so long as a store
in the page is not attempted and then, when a
store is attempted in a particular address
space, assigns a unique page frame to the
page in that address space and copies the
contents of the page to the new page frame.

2. In the problem state, the effective address that
caused a protection exception is known to
have required translation by DAT if DAT was
on, as indicated by the DAT-mode bit in the
program old PSW. In the supervisor state
when the virtual-address enhancement of sup-
pression on protection is not installed, the
DAT-mode bit is not a reliable indicator of
whether DAT was required since the effective
address may be a real address used by, for
example, STORE USING REAL ADDRESS.
When the virtual-address enhancement is
installed, the effective address stored at real
locations 144-147 is known to be a virtual

address if DAT was on. The knowledge that
the address is virtual allows programmed
forms of access-register translation and
dynamic address translation to be performed
to determine whether the exception was due
to either access-list-controlled or page pro-
tection as opposed to low-address or key-
controlled protection.

3. AIX/ESA does not use key-controlled pro-
tection. The virtual-address enhancement
extends the usefulness of suppression on pro-
tection to other operating systems that do use
key-controlled protection.

4. The results of suppression on protection are
summarized in Figure 3-4.

LA or ALC Virt. Bits 30,31
Key- or Addr. and Loc.
Cont. Page |Eff. [Enhmt.|Bit |160 if
Prot.|DAT (Prot.|Addr.|Inst1.|29 |Bit 29 One
No |On Yes |Log. - 1 p

Yes [On Yes |Log. - Ul P

Yes [Off | No |Log. - U2 U3

Yes [Off | No [Real - U2 U3

Yes |On No |Log. - U2 p

Yes [On No |[Real No U2 U3

Yes [On No |[Real Yes | OA -

Explanation:

- Immaterial or not applicable.

ALC Access-list-controlled.

LA Low-address.

Log. Logical.

P Predictable.

U1 Unpredictable because Tow-address or
key-controlled protection may be
recognized instead of access-1ist-
controlled or page protection.

U2 Unpredictable because bit 29 is only
required to be set to one for access-
list-controlled or page protection.

VK] Unpredictable because effective
address is not to be translated by
DAT.

0A Zero because DAT is on and a virtual
effective address would not be
stored.

Figure 3-4. Suppression-on-Protection Results

Chapter 3. Storage 3-13

Reference Recording

Reference recording provides information for use
in selecting pages for replacement. Reference
recording uses the reference bit, bit 5 of the
storage key. The reference bit is set to one each
time a location in the corresponding storage block
is referred to either for fetching or storing informa-
tion, regardless of whether DAT is on or off.

Reference recording is always active and takes
place for all storage accesses, including those
made by any CPU, any operator facility, or the
channel subsystem. It takes place for implicit
accesses made by the machine, such as those
which are part of interruptions and 1/O-instruction
execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

¢ INSERT STORAGE KEY EXTENDED

e RESET REFERENCE BIT EXTENDED (refer-
ence bit is set to zero)

e SET STORAGE KEY EXTENDED (reference
bit is set to a specified value)

The record provided by the reference bit is sub-
stantially accurate. The reference bit may be set
to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be
made without the reference bit being set to one.
Under certain unusual circumstances, a reference
bit may be set to zero by other than explicit
program action.

Change Recording

Change recording provides information as to
which pages have to be saved in auxiliary storage
when they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents in the corresponding
storage block to be changed. A store access that
does not change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

3-14 ESA/390 Principles of Operation

1. For the CPU, a store access is prohibited
whenever an access exception exists for that
access, or whenever an exception exists
which is of higher priority than the priority of
an access exception for that access.

2. For the channel subsystem, a store access is
prohibited whenever a key-controlled-
protection violation exists for that access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, any operator facility, or
the channel subsystem. It takes place for implicit
references made by the machine, such as those
which are part of interruptions.

Change recording does not take place for the
operands of the following instructions since they
directly modify a storage key without modifying a
storage location:

e RESET REFERENCE BIT EXTENDED
e SET STORAGE KEY EXTENDED (change bit
is set to a specified value)

Change bits which have been changed from zeros
to ones are not necessarily restored to zeros on
CPU retry (see ['CPU Retry” on page 11-2). See

“Exceptions_to Nullification and Suppression” on|

page_5-18 Jor a description of the handling of the
change bit in certain unusual situations.

Prefixing

Prefixing provides the ability to assign the range of
real addresses 0-4095 to a different block in abso-
lute storage for each CPU, thus permitting more
than one CPU sharing main storage to operate
concurrently with a minimum of interference, espe-
cially in the processing of interruptions.

Prefixing causes real addresses in the range
0-4095 to correspond to the block of 4K-byte
absolute addresses (the prefix area) identified by
the value in the prefix register for the CPU, and
the block of real addresses identified by the value
in the prefix register to correspond to absolute
addresses 0-4095. The remaining real addresses
are the same as the corresponding absolute
addresses. This transformation allows each CPU
to access all of main storage, including the first 4K
bytes and the locations designated by the prefix
registers of other CPUs.

The relationship between real and absolute
addresses is graphically depicted in
page 3-16,

The prefix is a 19-bit quantity contained in bit posi-
tions 1-19 of the prefix register. The register has
the following format:

/ Prefix 111111111117

0 1 20 31

The contents of the register can be set and
inspected by the privileged instructions SET
PREFIX and STORE PREFIX, respectively. On
setting, bits corresponding to bit positions 0 and
20-31 of the prefix register are ignored. On
storing, zeros are provided for these bit positions.
When the contents of the prefix register are
changed, the change is effective for the next
sequential instruction.

When prefixing is applied, the real address is
transformed into an absolute address by using

one of the following rules, depending on bits 1-19
of the real address:

1. Bits 1-19 of the address, if all zeros, are
replaced with bits 1-19 of the prefix.

2. Bits 1-19 of the address, if equal to bits 1-19
of the prefix, are replaced with zeros.

3. Bits 1-19 of the address, if not all zeros and
not equal to bits 1-19 of the prefix, remain
unchanged.

In all cases, bits 20-31 of the address remain
unchanged.

Only the address presented to storage is trans-
lated by prefixing. The contents of the source of
the address remain unchanged.

The distinction between real and absolute
addresses is made even when the prefix register
contains all zeros, in which case a real address
and its corresponding absolute address are iden-
tical.

Chapter 3. Storage 3-15

Prefixing Prefixing

T 7] r—-————-——-—-—=—-° 1 — T 7] r—-————-——-—-—=—-° 1 — T

+ |——+No Change | 1+ | | }

/ / /

T = | Apply | — 1 | | No Change———— +

1{———Zeros > |2

= O | | }

/ / /

t | | b4 aely | -1

AR Zeros 1

I | | = -1

} | | } | | }

/ / /

1 |——+No Change | + | | 1

T | | + | | No Change————| +

t | | t | | t
4096 + —f | Apply | 4096 — + — | Apply | — + 4096

Prefix > < Prefix
o+t—-+ Lt ———————— d 0 -+ - b - — - — 10

Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B

(1) Real addresses in which bits 1-19 are equal to the prefix for this CPU (A or B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real locations 0-4095.

Figure 3-5. Relationship between Real and Absolute Addresses

Address Spaces

An address space is a consecutive sequence of
integer numbers (virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro-
ceeds left to right.

When a virtual address is used by a CPU to
access main storage, it is first converted, by
means of dynamic address translation (DAT), to a
real address, and then, by means of prefixing, to
an absolute address. DAT uses two levels of
tables (segment tables and page tables) as trans-
formation parameters. The designation (origin and
length) of a segment table is found for use by
DAT in a control register or as specified by an
access register.

DAT uses, at different times, the segment-table
designations in different control registers or speci-
fied by the access registers. The choice is deter-
mined by the translation mode specified in the
current PSW. Four translation modes are avail-

3-16 ESA/390 Principles of Operation

able: primary-space mode, secondary-space
mode, access-register mode, and home-space
mode. Different address spaces are addressable
depending on the translation mode.

At any instant when the CPU is in the primary-
space mode or secondary-space mode, the CPU
can translate virtual addresses belonging to two
address spaces—the primary address space and
the secondary address space. At any instant
when the CPU is in the access-register mode, it
can translate virtual addresses of up to 16
address spaces—the primary address space and
up to 15 AR-specified address spaces. At any
instant when the CPU is in the home-space mode,
it can translate virtual addresses of the home
address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary
segment-table designation. Similarly, the sec-
ondary address space consists of secondary
virtual addresses translated by means of the sec-
ondary segment-table designation, the

AR-specified address spaces consist of
AR-specified virtual addresses translated by
means of AR-specified segment-table desig-
nations, and the home address space consists of
home virtual addresses translated by means of the
home segment-table designation. The primary
and secondary segment-table designations are in
control registers 1 and 7, respectively. The
AR-specified segment-table designations are in
control registers 1 and 7 and in table entries
called ASN-second-table entries. The home
segment-table designation is in control register 13.

Changing to Different Address Spaces

A program can cause different address spaces to
be addressable by using the semiprivileged SET
ADDRESS SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction to change
the translation mode to the primary-space mode,
secondary-space mode, access-register mode, or
home-space mode. However, SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST can set the home-space mode
only in the supervisor state. The program can
cause still other address spaces to be address-
able by using other semiprivileged instructions to
change the segment-table designations in control
registers 1 and 7 and by using unprivileged
instructions to change the contents of the access
registers. Only the privileged LOAD CONTROL
instruction is available for changing the home
segment-table designation in control register 13.

Address-Space Number

An address space may be assigned an address-
space number (ASN) by the control program. The
ASN designates, within a two-level table structure
in main storage, an ASN-second-table entry con-
taining information about the address space. If
the ASN-second-table entry is marked as valid, it
contains the segment-table designation that
defines the address space.

Under certain circumstances, the semiprivileged
instructions which place a new segment-table des-
ignation in control register 1 or 7 fetch this
segment-table designation from an
ASN-second-table entry. Some of these
instructions use an ASN-translation mechanism
which, given an ASN, can locate the designated
ASN-second-table entry.

The 16-bit unsigned binary format of the ASN
permits 64K unique ASNSs.

The ASNs for the primary and secondary address
spaces are assigned positions in control registers.
The ASN for the primary address space, called
the primary ASN, is assigned bits 16-31 of control
register 4, and that for the secondary address
space, called the secondary ASN, is assigned bits
16-31 of control register 3. The registers have the
following formats:

Control Register 4

PASN

16 31

Control Register 3

SASN

16 31

An instruction that uses ASN translation and loads
the primary or secondary segment-table desig-
nation into the appropriate control register also
loads the corresponding ASN into the appropriate
control register.

The ASN for the home address space is not
assigned a position in a control register.

An access register containing the value 0 or 1
specifies the primary or secondary address space,
respectively; and the segment-table designation
specified by the access register is in control reg-
ister 1 or 7, respectively. An access register con-
taining any other value designates an entry in a
table called an access list. The designated
access-list entry contains the real address of an
ASN-second-table entry for the address space
specified by the access register. The segment-
table designation specified by the access register
is in the ASN-second-table entry. Translating the
contents of an access register to obtain a
segment-table designation for use by DAT does
not involve the use of an ASN.

Note: Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as “storage.”

Programming Note: Because an
ASN-second-table entry is located from an
access-list entry by means of its address instead
of by means of its ASN, the ASN-second-table
entries designated by access-list entries can be

Chapter 3. Storage 3-17

“pseudo” ASN-second-table entries, that is, entries
which are not in the two-level structure able to be
indexed by means of the ASN-translation process.
The number of unique pseudo ASN-second-table
entries can be greater than the number of unique
ASNs and is limited only by the amount of storage
available to be occupied by the ASN-second-table
entries. Thus, in a sense, there is no limit on the
number of possible address spaces.

ASN Translation

ASN translation is the process of translating a
16-bit ASN to locate the address-space-control
parameters. ASN translation may be performed
as part of PROGRAM CALL with space switching
(PC-ss), it is performed as part of PROGRAM
TRANSFER with space switching (PT-ss) and
SET SECONDARY ASN with space switching
(SSAR-ss), and it may be performed as part of
LOAD ADDRESS SPACE PARAMETERS. For
PC-ss and PT-ss, the ASN which is translated
replaces the primary ASN in control register 4.
For SSAR-ss, the ASN which is translated
replaces the secondary ASN in control register 3.
These two translation processes are called
primary ASN translation and secondary ASN
translation, respectively, and both can occur for
LOAD ADDRESS SPACE PARAMETERS. The
ASN-translation process is the same for both
primary and secondary ASN translation; only the
uses of the results of the process are different.

ASN translation may also be performed as part of
PROGRAM RETURN. Primary ASN translation is
performed as part of PROGRAM RETURN with
space switching (PR-ss). Secondary ASN trans-
lation is performed if the secondary ASN restored
by PROGRAM RETURN (PR-ss or PROGRAM
RETURN to current primary) does not equal the
primary ASN restored by PROGRAM RETURN.

The ASN-translation process uses two tables, the
ASN first table and the ASN second table. They
are used to locate the address-space-control
parameters and a third table, the authority table,
which is used when ASN authorization is per-
formed.

For the purposes of this translation, the 16-bit
ASN is considered to consist of two parts: the
ASN-first-table index (AFX) is the leftmost 10 bits
of the ASN, and the ASN-second-table index

3-18 ESA/390 Principles of Operation

(ASX) is the six rightmost bits. The ASN has the
following format:

ASN

AFX ASX

0 10 15

The AFX is used to select an entry from the ASN
first table. The origin of the ASN first table is des-
ignated by the ASN-first-table origin in control reg-
ister 14. The ASN-first-table entry contains the
origin of the ASN second table. The ASX is used
to select an entry from the ASN second table.
This entry contains the address-space-control
parameters.

ASN-Translation Controls

ASN translation is controlled by the
ASN-translation-control bit and the ASN-first-table
origin, both of which reside in control register 14.
It is also controlled by the address-space-function-
control bit in control register 0.

Control Register 14

T AFTO

12 31

ASN-Translation Control (T): Bit 12 of control
register 14 is the ASN-translation-control bit. This
bit provides a mechanism whereby the control
program can indicate whether ASN translation can
occur while a particular program is being exe-
cuted. Bit 12 must be one to allow completion of
these instructions:

¢ LOAD ADDRESS SPACE PARAMETERS

¢ PROGRAM CALL with space switching

¢ PROGRAM RETURN with space switching or
when the restored SASN does not equal the
restored PASN

¢ PROGRAM TRANSFER with space switching

e SET SECONDARY ASN

Otherwise, a special-operation exception is recog-
nized. The ASN-translation-control bit is exam-
ined in both the problem and the supervisor
states.

When the address-space-function-control bit in
control register 0 is one, PROGRAM CALL with
space switching (PC-ss) may omit performing ASN

translation and instead obtain the address of an
ASN-second-table entry directly from an entry-
table entry. The ASN-translation control must be
one whether or not PC-ss performs ASN trans-
lation; otherwise, a special-operation exception is
recognized.

ASN-First-Table Origin (AFTO): Bits 13-31 of
control register 14, with 12 zeros appended on the
right, form a 31-bit real address that designates
the beginning of the ASN first table.

Control Register 0

Bit 15 of control register O is the address-space-
function (ASF) control. When the ASF control is
zero, the ASN-second table begins on a 16-byte
boundary, an ASN-second-table entry has a length
of 16 bytes, and PROGRAM CALL with space
switching (PC-ss) always performs ASN trans-
lation. When the ASF control is one, the
ASN-second table begins on a 64-byte boundary,
an ASN-second-table entry has a length of 64
bytes, and PC-ss may obtain an
ASN-second-table-entry address from an entry-
table entry instead of by performing ASN trans-
lation.

The ASF control has other effects also. A com-
plete description of the effects of the ASF control

is in [‘Address-Space-Function _Control” _on|
page 5-40,

ASN-Translation Tables

The ASN-translation process consists in a two-
level lookup using two tables: an ASN first table
and an ASN second table. These tables reside in
real storage.

ASN-First-Table Entries

When the ASF control, bit 15 of control register O,
is zero, an entry in the ASN first table has the fol-
lowing format:

I ASTO 0000

0 1 28 31

When the ASF control is one, an entry has the fol-
lowing format:

I ASTO 000000

0 1 26 31

The fields in the entry are allocated as follows:
AFX-Invalid Bit (I): Bit 0 controls whether the
ASN second table associated with the
ASN-first-table entry is available. When bit 0 is
zero, ASN translation proceeds by using the des-
ignated ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table Origin (ASTO): Bits 1-27,
with four zeros appended on the right, or bits
1-25, with six zeros appended on the right, are
used to form a 31-bit real address that designates
the beginning of the ASN second table.

Bits 28-31 of the AFT entry, or bits 26-31, must be
zeros; otherwise, an ASN-translation-specification
exception may be recognized as part of the exe-
cution of the instruction using that entry for ASN
translation.

ASN-Second-Table Entries

When the ASF control in control register 0 is zero,
the ASN-second-table entry has a length of 16
bytes. When the ASF control is one, the entry
has a length of 64 bytes. The format of the
16-byte ASN-second-table entry is identical to that
of the first 16 bytes of the 64-byte entry. Only the
first 16 bytes of the ASN-second-table entry
(16-byte entry or 64-byte entry) are used in or as
a result of ASN translation. The 16-byte
ASN-second-table entry is described below. The
64-byte entry as used by access-register trans-
lation for other than the BRANCH IN SUBSPACE
GROUP instruction is described in
[ASN-Second-Table Entries” on page 5-45. The
64-byte entry as used by BRANCH IN SUB-
SPACE GROUP is described in [‘'Subspace-Group|
IASN-Second-Table Entries” on page 5-54

The 16-byte ASN-second-table entry has the fol-
lowing format:

I ATO 0(B
01 30 31

AX ATL 0000
32 48 60 63

Chapter 3. Storage 3-19

T STD |

X STO G|P|S| STL
64 84 86 89 95
| LTD |

v LTO LTL
96 121 127

The fields in the entry are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the
ASN-second-table entry is available. When bit O
is zero, ASN translation proceeds. When the bit is
one, the ASN translation cannot continue.

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Base-Space Bit (B): Bit 31 is ignored during
ASN translation if the subspace-group facility is
installed and the ASF control is one. If the
subspace-group facility is not installed or the ASF
control is zero, bit 31 must be zero; otherwise, an
ASN-translation-specification exception may be
recognized. Bit 31 is further described in
['Subspace-Group ASN-Second-Table Entries” on|
page 5-54

Authorization Index (AX): Bits 32-47 are used
as a result of primary ASN translation by
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER and, possibly, LOAD
ADDRESS SPACE PARAMETERS. The AX field
is ignored for secondary ASN translation.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular AX falls within the authority table.

Segment-Table Designation (STD): Bits 64-95
are used as a result of ASN translation to replace
the primary-segment-table designation (PSTD) or
the secondary-segment-table designation (SSTD).

3-20 ESA/390 Principles of Operation

For SET SECONDARY ASN, the STD field
replaces the SSTD, bits 0-31 of control register 7.
For PROGRAM CALL, the STD field replaces the
PSTD, bits 0-31 of control register 1. Each of
these actions may occur independently for LOAD
ADDRESS SPACE PARAMETERS. For
PROGRAM TRANSFER, the STD field replaces
both the PSTD and the SSTD. For PROGRAM
RETURN, as a result of primary ASN translation,
the STD field replaces the PSTD, and, as a result
of secondary ASN translation, the STD field
replaces the SSTD. The contents of the entire
STD field are placed in the appropriate control
registers without being inspected for validity.

The subspace-group-control bit (G) (bit 86, or bit
22 of the STD field) is an extension provided by
the subspace-group facility. The bit indicates,
when one, that the STD specifies an address
space that is the base space or a subspace of a
subspace group. If (1) G is one in the STD
placed in a control register as described above,
(2) the current dispatchable unit last had control in
a subspace of its subspace group instead of in the
base space, as indicated by the subspace-active
bit being one in the dispatchable-unit control table,
and (3) the STD specifies the base space of the
group, as indicated by the origin of this AST entry
being equal to the base-AST-entry origin in the
dispatchable-unit control table, then bits 1-23 and
25-31 of the STD in the control register are
replaced by bits 1-23 and 25-31 of the STD for
that last entered subspace. The STD for the sub-
space is obtained from the AST entry designated
by the subspace-AST-entry origin in the
dispatchable-unit control table.

The storage-alteration-event bit (S) (bit 88, or bit
24 of the STD field) is an extension provided by
the program-event-recording-2 (PER-2) facility.

Space-Switch-Event Control (X): Bit 0 of the
segment-table designation is the space-switch-
event-control bit. When, in PC-ss, PCF-ss, PR-ss,
or PT-ss, this bit is one in control register 1 either
before or after the execution of the instruction, a
program interruption for a space-switch event
occurs after the execution of the instruction is
completed. A space-switch-event program inter-
ruption also occurs after the completion of a SET
ADDRESS SPACE CONTROL, SET ADDRESS
SPACE CONTROL FAST, or RESUME
PROGRAM instruction that changes the trans-
lation mode either to or from the home-space

mode when this bit is one in either control register
1 or control register 13. When, in LOAD
ADDRESS SPACE PARAMETERS, this bit is one
during primary ASN translation, this fact is indi-
cated by the condition code.

Linkage-Table Designation (LTD): Bits 96-127
may be used as a result of primary ASN trans-
lation and they are used in PC-number translation.
The linkage-table-designation field contains the
subsystem-linkage-control bit (V) (bit 96), the
linkage-table origin (LTO) (bits 97-120), and the
linkage-table length (LTL) (bits 121-127). When
the ASF control is zero, the contents of the LTD
field are placed in control register 5 as a result of
primary ASN translation, and the
PC-number-translation process obtains the LTD
from control register 5. When the ASF control is
one, control register 5 contains the origin of an
ASN-second-table entry called the primary AST
entry. The primary-AST-entry origin is replaced in
control register 5 as a result of primary ASN trans-
lation, and PC-number translation obtains the LTD
from the LTD field in the primary AST entry.
PC-number translation is described in
[Program Execution.’]

Bits 30, 31, and 60-63 of the AST entry must be
zeros; otherwise, an ASN-translation-specification
exception may be recognized as part of the exe-
cution of the instruction using that entry for ASN
translation. However, ASN translation does not
require bit 31 to be zero if the subspace-group
facility is installed and the ASF control is one.

Programming Note: The unused portion of the
STD field, bits 84 and 85 of the AST entry, which
corresponds to bits 20 and 21 of the STD, should
be set to zeros. These bits are reserved for future
expansion, and programs which place nonzero
values in these bit positions may not operate
compatibly on future machines.

ASN-Translation Process

This section describes the ASN-translation
process as it is performed during the execution of
the space-switching forms of PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
and SET SECONDARY ASN, and also in
PROGRAM RETURN when the restored sec-
ondary ASN does not equal the restored primary
ASN. ASN translation for LOAD ADDRESS
SPACE PARAMETERS is the same, except that
AFX-translation and ASX-translation exceptions do
not occur; such situations are instead indicated by
the condition code. Translation of an ASN is per-
formed by means of two tables, an ASN first table
and an ASN second table, both of which reside in
main storage.

The ASN first index is used to select an entry from
the ASN first table. This entry designates the
ASN second table to be used.

The ASN second index is used to select an entry
from the ASN second table. This entry contains
the address-space-control parameters. When the
ASF control is one, the ASN second table begins
on a 64-byte boundary, and its entries are each
64 bytes in length; otherwise, the table begins on
a 16-byte boundary, and the entries are 16 bytes
in length.

If the | bit is one in either the ASN-first-table entry
or ASN-second-table entry, the entry is invalid,
and the ASN-translation process cannot be com-
pleted. An AFX-translation exception or
ASX-translation exception is recognized.

Whenever access to main storage is made during
the ASN-translation process for the purpose of
fetching an entry from an ASN first table or ASN
second table, key-controlled protection does not

apply.

The ASN-translation process is shown in

[Figure 3-6 on page 3-22|

Chapter 3. Storage 3-21

ASN

CR14 T AFTO AFX |ASX
(x4096) (x4) (xN)
ASN First Table
_,
R I ASTO 0
(xN)

ASN Second Table
_,
R

I ATO 0B AX ATL |0

STD LTD *

N: 16 if ASF control, bit 15 of control register 0, is zero; 64 if ASF

control is one
R: Address is real

*: ASTE is 64 bytes if ASF control is one; last 48 bytes are not shown

Figure 3-6. ASN Translation

ASN-First-Table Lookup
The AFX portion of the ASN, in conjunction with
the ASN-first-table origin, is used to select an
entry from the ASN first table.

The 31-bit real address of the ASN-first-table entry
is obtained by appending 12 zeros on the right to
the AFT origin contained in bit positions 13-31 of
control register 14 and adding the AFX portion
with two rightmost and 19 leftmost zeros
appended. This addition cannot cause a carry
into bit position 0. All 31 bits of the address are
used, regardless of whether the current PSW
specifies the 24-bit or 31-bit addressing mode.

3-22 ESAJ390 Principles of Operation

All four bytes of the ASN-first-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the ASN-first-table entry
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

Bit 0 of the four-byte AFT entry specifies whether
the corresponding AST is available. If this bit is
one, an AFX-translation exception is recognized.
When the AST-entry size is 16 bytes and bit posi-

tions 28-31 of the AFT entry do not contain zeros,
or when the AST-entry size is 64 bytes and bit
positions 26-31 of the AFT entry do not contain
zeros, an ASN-translation-specification exception
may be recognized. When no exceptions are
recognized, the entry fetched from the AFT is
used to access the AST.

ASN-Second-Table Lookup

The ASX portion of the ASN, in conjunction with
the ASN-second-table origin contained in the
ASN-first-table entry, is used to select an entry
from the ASN second table.

When the address-space-function (ASF) control,
bit 15 of control register 0, is zero, the ASN
second table begins on a 16-byte boundary, and
its entries are each 16 bytes in length. When the
ASF control is one, the ASN second table begins
on a 64-byte boundary, and its entries are 64
bytes in length.

The 31-bit real address of the ASN-second-table
entry is obtained as follows. When the AST-entry
size is 16 bytes, the address is obtained by
appending four zeros on the right to bits 1-27 of
the ASN-first-table entry and adding the ASX with
four rightmost and 21 leftmost zeros appended.
When the AST-entry size is 64 bytes, the address
is obtained by appending six zeros on the right to
bits 1-25 of the ASN-first-table entry and adding
the ASX with six rightmost and 19 leftmost zeros
appended. In both of these cases, when a carry
into bit position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 231 - 1 to zero. All 31 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit or 31-bit addressing mode.

The fetch of the 16 or 64 bytes of the
ASN-second-table entry appears to be word-
concurrent as observed by other CPUs, with the
leftmost word fetched first. The order in which the
remaining 3 or 15 words are fetched is unpredict-
able. The fetch access is not subject to pro-
tection. When the storage address which is
generated for fetching the ASN-second-table entry
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

Bit O of the 16-byte or 64-byte ASN-second-table
entry specifies whether the address space is

accessible. If this bit is one, an ASX-translation
exception is recognized. If bit positions 30, 31,
and 60-63 of the ASN-second-table entry do not
contain zeros, an ASN-translation-specification
exception may be recognized. A one in bit posi-
tion 31 does not cause an
ASN-translation-specification exception to be
recognized if the subspace-group facility is
installed and the ASF control is one.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered during
the ASN-translation process are collectively
referred to as ASN-translation exceptions. A list
of these exceptions and their priorities is given in
[Chapter 6, “Interruptions.’|

ASN Authorization

ASN authorization is the process of testing
whether the program associated with the current
authorization index is permitted to establish a par-
ticular address space. The ASN authorization is
performed as part of PROGRAM TRANSFER with
space switching (PT-ss) and SET SECONDARY
ASN with space switching (SSAR-ss) and may be
performed as part of LOAD ADDRESS SPACE
PARAMETERS. ASN authorization is performed
after the ASN-translation process for these
instructions.

ASN authorization is also performed as part of
PROGRAM RETURN when the restored sec-
ondary ASN does not equal the restored primary
ASN. ASN authorization of the restored sec-
ondary ASN is performed after ASN translation of
the restored secondary ASN.

When performed as part of PT-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the primary ASN and is called
primary-ASN authorization. When performed as
part of LOAD ADDRESS SPACE PARAMETERS,
PROGRAM RETURN, or SSAR-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the secondary ASN and is called
secondary-ASN authorization.

The ASN authorization is performed by means of
an authority table in real storage which is desig-
nated by the authority-table-origin and authority-
table-length fields in the ASN-second-table entry.

Chapter 3. Storage 3-23

ASN-Authorization Controls

ASN authorization uses the authority-table origin
and the authority-table length from the
ASN-second-table entry, together with an authori-
zation index.

Control Register 4

For PT-ss and SSAR-ss, the current contents of
control register 4 include the authorization index.
For LOAD ADDRESS SPACE PARAMETERS and
PROGRAM RETURN, the value which will
become the new contents of control register 4 is
used. The register has the following format:

AX

0 15

Authorization Index (AX): Bits 0-15 of control
register 4 are used as an index to locate the
authority bits in the authority table.

ASN-Second-Table Entry

The ASN-second-table entry which is fetched as
part of the ASN translation process contains infor-
mation which is used to designate the authority
table. An entry in the ASN second table has the
following format:

ATO 0B
0 1 31
ATL 0000
32 48 60 64

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is equal to
one more than the ATL value. The contents of
the length field are used to establish whether the
entry designated by the authorization index falls
within the authority table.

3-24 ESAJ390 Principles of Operation

Authority-Table Entries

The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

PS|PS|PS|PS

0 7

The fields are allocated as follows:

Primary Authority (P): The left bit of an
authority-table entry controls whether the program
with the authorization index corresponding to the
entry is permitted to establish the address space
as a primary address space. If the P bit is one,
the establishment is permitted. If the P bit is zero,
the establishment is not permitted.

Secondary Authority (S): The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is per-
mitted to establish the address space as a sec-
ondary address space. If the S bit is one, the
establishment is permitted. If the S bit is zero, the
establishment is not permitted.

The authority table is also used in the extended-
authorization process, as part of access-register
translation. Extended authorization is described in
[‘Authorizing the Use of the Access-List Entry” on|

page 5-50

ASN-Authorization Process

This section describes the ASN-authorization
process as it is performed during the execution of
PROGRAM TRANSFER with space switching and
SET SECONDARY ASN with space switching.
For these two instructions, the ASN-authorization
process is performed by using the authorization
index currently in control register 4. Secondary
authorization for PROGRAM RETURN, when the
restored secondary ASN does not equal the
restored primary ASN, and for LOAD ADDRESS
SPACE PARAMETERS is the same, except that
the value which will become the new contents of
control register 4 is used for the authorization
index. Also, for LOAD ADDRESS SPACE
PARAMETERS, a secondary-authority exception
does not occur. Instead, such a condition is indi-
cated by the condition code.

The ASN-authorization process is performed by
using the authorization index, in conjunction with

the authority-table origin and length from the AST
entry, to select an authority-table entry. The entry
is fetched, and either the primary- or secondary-
authority bit is examined, depending on whether

CR4 AX

(x1/4)

ASN Second Table

the primary- or secondary-ASN-authorization
process is being performed. The
ASN-authorization process is shown in Figure 3-7.

ASN-Second-Table Entry

I ATO 0B AX ATL (0O

STD LTD *

(x4)

Authority Table
—>H

R |P|S For secondary ASN authorization
Secondary-authority exception

For secondary ASN authorization
Set condition code 2 if S bit
table Tength exceeded.

R: Address is real
*: ASTE is 64 bytes if ASF control is one;

Figure 3-7. ASN Authorization

Authority-Table Lookup

The authorization index, in conjunction with the
authority-table origin contained in the
ASN-second-table entry, is used to select an entry
from the authority table.

The authorization index is contained in bit posi-
tions 0-15 of control register 4.

Bit positions 1-29 of the AST entry contain the left-
most 29 bits of the 31-bit real address of the
authority table (ATO), and bit positions 48-59
contain the length of the authority table (ATL).

zero or table length exceeded.

For primary ASN authorization (PT-ss only):
Primary-authority exception if P bit
zero or table length exceeded.

(PR and SSAR-ss only):
if S bit

(LASP only):
Zero or

last 48 bytes are not shown

The 31-bit real address of a byte in the authority
table is obtained by appending two zeros on the
right to the authority-table origin and adding the 14
leftmost bits of the authorization index with 17
zeros appended on the left. when a carry into bit
position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 231 - 1 to zero. All 31 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit or 31-bit addressing mode.

Chapter 3. Storage 3-25

As part of the authority-table-entry-lookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the authority-table length is
exceeded, condition code 2 is set.

The fetch access to the byte in the authority table
is not subject to protection. When the storage
address which is generated for fetching the byte
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

The byte contains four authority-table entries of
two bits each. The rightmost two bits of the
authorization index, bits 14 and 15 of control reg-
ister 4, are used to select one of the four entries.
The left or right bit of the entry is then tested,
depending on whether the authorization test is for
a primary ASN or a secondary ASN. The fol-
lowing table shows the bit which is selected from
the byte as a function of bits 14 and 15 of the
authorization index and the instruction PT-ss,

SSAR-ss, PROGRAM RETURN, or LOAD
ADDRESS SPACE PARAMETERS.
Bit Selected from
Authority-Table Byte
for Test
Authorization-
Index Bits S Bit
P Bit (SSAR-ss,
14 15 (PT-ss) PR, or LASP)
0 0 0 1
0 1 2 3
1 0 4 5
1 1 6 7

If the selected bit is one, the ASN is authorized,
and the appropriate address-space-control param-
eters from the AST entry are loaded into the
appropriate control registers. If the selected bit is
zero, the ASN is not authorized, and a primary-
authority exception is recognized for PT-ss or a
secondary-authority exception is recognized for
SSAR-ss or PROGRAM RETURN. For LOAD
ADDRESS SPACE PARAMETERS, when the
ASN is not authorized, condition code 2 is set.

3-26 ESA/390 Principles of Operation

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered during
the primary- and secondary-ASN-authorization
processes and their priorities are described in the
definitions of the instructions in which ASN author-
ization is performed.

Programming Note: The primary- and
secondary-authority exceptions cause nullification
in order to permit dynamic modification of the
authority table. Thus, when an address space is
created or “swapped in,” the authority table can
first be set to all zeros and the appropriate
authority bits set to one only when required.

Dynamic Address Translation

Dynamic address translation (DAT) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device,
and at a later time return the program and the
data to different main-storage locations for
resumption of execution. The transfer of the
program and its data between main and auxiliary
storage may be performed piecemeal, and the
return of the information to main storage may take
place in response to an attempt by the CPU to
access it at the time it is needed for execution.
These functions may be performed without change
or inspection of the program and its data, do not
require any explicit programming convention for
the relocated program, and do not disturb the exe-
cution of the program except for the time delay
involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein
storage appears to be larger than the main
storage which is available in the configuration.
This apparent main storage is referred to as virtual
storage, and the addresses used to designate
locations in the virtual storage are referred to as
virtual addresses. The virtual storage of a user
may far exceed the size of the main storage which
is available in the configuration and normally is
maintained in auxiliary storage. The virtual
storage is considered to be composed of blocks of
addresses, called pages. Only the most recently
referred-to pages of the virtual storage are
assigned to occupy blocks of physical main

storage. As the user refers to pages of virtual
storage that do not appear in main storage, they
are brought in to replace pages in main storage
that are less likely to be needed. The swapping of
pages of storage may be performed by the oper-
ating system without the user's knowledge.

The sequence of virtual addresses associated with
a virtual storage is called an address space. With
appropriate support by an operating system, the
dynamic-address-translation facility may be used
to provide a number of address spaces. These
address spaces may be used to provide degrees
of isolation between users. Such support can
consist of a completely different address space for
each user, thus providing complete isolation, or a
shared area may be provided by mapping a
portion of each address space to a single common
storage area. Also, instructions are provided
which permit a semiprivileged program to access
more than one such address space. Dynamic
address translation provides for the translation of
virtual addresses from multiple different address
spaces without requiring that the translation
parameters in the control registers be changed.
These address spaces are called the primary
address space, secondary address space, and
AR-specified address spaces. A privileged
program can access also the home address
space.

In the process of replacing blocks of main storage
by new information from an external medium, it
must be determined which block to replace and
whether the block being replaced should be
recorded and preserved in auxiliary storage. To
aid in this decision process, a reference bit and a
change bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of CCWs and IDAWSs in I/O operations. The
CCW:-indirect-data-addressing facility is provided
to aid 1/0O operations in a virtual-storage environ-
ment.

Address computation can be carried out in either
the 24-bit or 31-bit addressing mode. When
address computation is performed in the 24-bit
addressing mode, seven zeros are appended on
the left to form a 31-bit address. Therefore, the
resultant logical address is always 31 bits in

length. All real and absolute addresses are 31
bits in length.

Dynamic address translation is the process of
translating a virtual address during a storage refer-
ence into the corresponding real address. The
virtual address may be a primary virtual address,
secondary virtual address, AR-specified virtual
address, or home virtual address. These
addresses are translated by means of the primary,
the secondary, an AR-specified, or the home
segment-table designation, respectively. After
selection of the appropriate segment-table desig-
nation, the translation process is the same for all
of the four types of virtual address.

In the process of translation, two types of units of
information are recognized—segments and pages.
A segment is a block of sequential Vvirtual
addresses spanning 1M bytes and beginning at a
1M-byte boundary. A page is a block of sequen-
tial virtual addresses spanning 4K bytes and
beginning at a 4K-byte boundary.

The virtual address, accordingly, is divided into
three fields. Bits 1-11 are called the segment
index (SX), bits 12-19 are called the page index
(PX), and bits 20-31 are called the byte index
(BX). The virtual address has the following
format:

/ SX PX BX

01 12 20 31

Virtual addresses are translated into real
addresses by means of two translation tables: a
segment table and a page table. These reflect the
current assignment of real storage. The assign-
ment of real storage occurs in units of pages, the
real locations being assigned contiguously within a
page. The pages need not be adjacent in real
storage even though assigned to a set of sequen-
tial virtual addresses.

Translation Control

Address translation is controlled by three bits in
the PSW and by a set of bits referred to as the
translation parameters. The translation parame-
ters are in control registers 0, 1, 7, and 13. Addi-
tional controls are located in the translation tables.

Additional controls are provided as described in
[Chapter 5, “Program Execution.”| These controls

Chapter 3. Storage 3-27

determine whether the contents of each access
register can be used to obtain a segment-table
designation for use by DAT.

Translation Modes

The three bits in the PSW that control dynamic
address translation are bit 5, the DAT-mode bit,
and bits 16 and 17, the address-space-control
bits. When the DAT-mode bit is zero, then DAT is
off, and the CPU is in the real mode. When the
DAT-mode bit is one, then DAT is on, and the
CPU is in the translation mode designated by the
address-space-control bits: 00 designates the
primary-space mode, 01 designates the access-
register mode, 10 designates the secondary-space
mode, and 11 designates the home-space mode.
The various modes are shown in Figure 3-8,
along with the handling of addresses in each
mode.

Hand1ing of Addresses
PSW Bit
Instruction| Logical
5[16|17|DAT Mode Addresses |Addresses
0| 0f 0|0ff|Real mode Real Real
0| 0 1|/0ff|Real mode Real Real
0| 1| 0|0ff|Real mode Real Real
0| 1| 1|0ff|Real mode Real Real
1| 0| 0|0On |Primary-space mode Primary Primary
virtual virtual
1| 0 1|0On [Access-register mode | Primary AR-speci-
virtual fied
virtual
1| 1| 0[0n |Secondary-space mode | Primary Secondary
virtual virtual
1| 1| 1{On |Home-space mode Home Home
virtual virtual

Figure 3-8. Translation Modes

Control Register 0

Six bits are provided in control register 0 for use in
controlling dynamic address translation. The bits
are assigned as follows:

D TF

5 8 13

Secondary-Space Control (D): Bit 5 of control
register 0 is the secondary-space-control bit.
When this bit is zero and execution of MOVE TO
PRIMARY, MOVE TO SECONDARY, or SET
ADDRESS SPACE CONTROL is attempted, a
special-operation exception is recognized. When
this bit is one, it indicates that the secondary
segment table is attached when the CPU is in the
primary-space mode.

3-28 ESA/390 Principles of Operation

Translation Format (TF): Bits 8-12 of control
register 0 specify the translation format, with only
one combination of the five control bits valid; all
other combinations are invalid.

The control bits are encoded as follows:

Bits of Control Register 0

8 9 10 11 12 | valid

1 0 1 1 0 Yes

ATl others No

When an invalid bit combination is detected in bit
positions 8-12, a translation-specification excep-
tion is recognized as part of the execution of an
instruction using address translation.

Control Register 1

Control register 1 contains the primary segment-
table designation (PSTD). The register has the
following format:

Primary Segment-
X Table Origin G|P[S| PSTL

0 1 20 22 25 31

Primary Space-Switch-Event Control (X):
When bit 0 of control register 1 is one:

¢ A space-switch-event program interruption
occurs when execution of the space-switching
foom of PROGRAM CALL (PC-ss),
PROGRAM CALL FAST (PCF-ss),
PROGRAM RETURN (PR-ss), or PROGRAM
TRANSFER (PT-ss) is completed. The inter-
ruption occurs if bit 0 is one either before or
after the operation.

e A space-switch-event program interruption
occurs upon completion of a RESUME
PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE
CONTROL FAST instruction that changes the
address space from which instructions are
fetched either to or from the home address
space; that is, when instructions are fetched
from the home address space either before or
after the operation but not both before and
after the operation.

e Condition code 3 is set by LOAD ADDRESS
SPACE PARAMETERS.

Primary Segment-Table Origin (PSTO): Bits
1-19 of control register 1, with 12 zeros appended
on the right, form an address that designates the
beginning of the primary segment table. It is
unpredictable whether the address is real or abso-
lute. This table is called the primary segment
table since it is used to translate virtual addresses
in the primary address space.

Primary Subspace-Group Control (G): Bit 22,
when one, indicates that the address space speci-
fied by the STD is the base space or a subspace
of a subspace group. When bit 22 is zero, the
address space is not in a subspace group.

Primary Private-Space Control (P): If bit 23 of
control register 1 is one, then (1) a one value of
the common-segment bit in a translation-
lookaside-buffer (TLB) segment-table entry pre-
vents the entry and the TLB page-table copy it
designates from being used when translating ref-
erences to the primary address space, even with a
match of segment-table origins; (2) low-address
protection and fetch-protection override do not
apply to the primary address space; and (3) a
translation-specification exception is recognized if
a reference to the primary address space is trans-
lated by means of a segment-table entry in
storage and the common-segment bit is one in the
entry.

Primary Storage-Alteration-Event Control (S):
With PER 2 when the storage-alteration-space
control in control register 9 is one, bit 24 of control
register 1 specifies, when one, that the primary
address space is one for which storage-alteration
events can occur. Bit 24 is examined when the
segment-table designation is used to perform
dynamic-address translation for a storage-operand
store reference. Bit 24 is ignored when the
storage-alteration-space control is zero, and it is
always ignored by PER 1.

Primary Segment-Table Length (PSTL): Bits
25-31 of control register 1 specify the length of the
primary segment table in units of 64 bytes, thus
making the length of the segment table variable in
multiples of 16 entries. The length of the primary
segment table, in units of 64 bytes, is one more
than the PSTL value. The contents of the length

field are used to establish whether the entry desig-
nated by the segment-index portion of a primary
virtual address falls within the primary segment
table.

Bits 20 and 21 of control register 1 are not
assigned and are ignored. Bit 22 is ignored if the
subspace-group facility is not installed. Bit 24 is
ignored if the PER-2 facility is not installed.

Control Register 7

Control register 7 contains the
segment-table designation (SSTD).
has the following format:

secondary
The register

Secondary Segment-
Table Origin G|P[S| SSTL

0 1 20 22 25 31

The secondary segment-table origin, secondary
subspace-group control (G), secondary private-
space control (P), secondary storage-alteration-
event control (S), and secondary segment-table
length (SSTL) in control register 7 are defined the
same as the fields in the same bit positions in
control register 1, except that control register 7
applies to the secondary address space.

Bits 0, 20, and 21 of control register 7 are not
assigned and are ignored. Bit 22 is ignored if the
subspace-group facility is not installed. Bit 24 is
ignored if the PER-2 facility is not installed.

Control Register 13

Control register 13 contains the home segment-
table designation (HSTD). The register has the
following format:

Home Segment-
X Table Origin G|P|S| HSTL

01 20 22 25 31

Home Space-Switch-Event Control (X): When
bit 0 of control register 13 is one, a space-switch-
event program interruption occurs upon com-
pleton of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST instruction that changes
the address space from which instructions are
fetched either to or from the home address space;
that is, when instructions are fetched from the
home address space either before or after the

Chapter 3. Storage 3-29

operation but not both before and after the opera-
tion.

The home segment-table origin, home private-
space control (P), home storage-alteration-event
control (S), and home segment-table length
(HSTL) in control register 13 are defined the same
as the fields in the same bit positions in control
register 1, except that control register 13 applies
to the home address space.

Bits 20 and 21 of control register 13 are not
assigned and are ignored. Bit 22 (G) is ignored.
Bit 24 is ignored if the PER-2 facility is not
installed.

Programming Notes:

1. The validity of the information loaded into a
control register, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa-
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
INVALIDATE PAGE TABLE ENTRY or LOAD
REAL ADDRESS is executed. The informa-
tion is not considered to be used when the
PSW specifies translation but an 1/O, external,
restart, or machine-check interruption occurs
before an instruction is executed, or when the
PSW specifies the wait state.

Translation Tables

The translation process consists in a two-level
lookup using two tables: a segment table and a
page table. These tables reside in real or abso-
lute storage.

Segment-Table Entries
The entry fetched from the segment table has the
following format:

0 Page-Table Origin Ilc|PTL

01 26 28 31

The fields in the segment-table entry are allocated
as follows:

3-30 ESA/390 Principles of Operation

Page-Table Origin (PTO): Bits 1-25, with six
zeros appended on the right, form the address
that designates the beginning of a page table. It
is unpredictable whether the address is real or
absolute.

Segment-Invalid Bit (I): Bit 26 controls whether
the segment associated with the segment-table
entry is available. When the bit is zero, address
translation proceeds by using the segment-table
entry. When the bit is one, the segment-table
entry cannot be used for translation.

Common-Segment Bit (C): Bit 27 controls the
use of the translation-lookaside-buffer (TLB)
copies of the segment-table entry and of the page
table which it designates. A zero identifies a
private segment; in this case, the segment-table
entry and the page table it designates may be
used only in association with the segment-table
origin that designates the segment table in which
the segment-table entry resides. A one identifies
a common segment; in this case, the segment-
table entry and the page table it designates may
continue to be used for translating addresses cor-
responding to the segment index, even though a
different segment table is specified. However,
TLB copies of the segment-table entry and page
table for a common segment are not usable if the
private-space control, bit 23, is one in the
segment-table designation used in the translation.
The common-segment bit must be zero if the
segment-table entry is fetched from storage during
a translation when the private-space control is one
in the segment-table designation being used; oth-
erwise, a translation-specification exception is
recognized.

Page-Table Length (PTL): Bits 28-31 specify the
length of the page table in units of 64 bytes (16
entries). The length of the page table, in units of
64 bytes, is one more than the PTL value. The
contents of the length field are used to establish
whether the entry designated by the page-index
portion of the virtual address falls within the page
table.

Bit 0 of the segment-table entry must be zero; if it
is not zero, a translation-specification exception is
recognized as part of the execution of an instruc-
tion using that entry for address translation.

Page-Table Entries
The entry fetched from the page table has the fol-
lowing format:

0 PFRA 0|IP|O

01 20 24 31

The fields in the page-table entry are allocated as
follows:

Page-Frame Real Address (PFRA): Bits 1-19
provide the leftmost bits of a real storage address.
When these bits are concatenated with the 12-bit
byte-index field of the virtual address on the right,
a 31-bit real address is obtained.

Page-Invalid Bit (I): Bit 21 controls whether the
page associated with the page-table entry is avail-
able. When the bit is zero, address translation
proceeds by using the page-table entry. When
the bit is one, the page-table entry cannot be used
for translation.

Page-Protection Bit (P): Bit 22 controls whether
store accesses can be made in the page. This
protection mechanism is in addition to the key-
controlled-protection and low-address-protection
mechanisms. The bit has no effect on fetch
accesses. If the bit is zero, stores are permitted
to the page, subject to the other protection mech-
anisms. If the bit is one, stores are disallowed.
An attempt to store when the page-protection bit is
one causes a protection exception to be recog-
nized.

Bit positions 0, 20, and 23 of the entry must
contain zeros; otherwise, a translation-
specification exception is recognized as part of the
execution of an instruction using that entry for
address translation. Bit positions 24-31 are not
assigned and are ignored.

Summary of Segment-Table and
Page-Table Sizes

The sizes of segment tables and page tables are
summarized in Figure 3-9.

Segment-Table Parameters
Corresponding
Virtual Segment Table Segment-
Address| Number of Table
Size Addressable| Maximum UsabTe |[Increment
(Bits) Segments |Size (Bytes)|Length Code| (Bytes)
241 16 64 0 --
31 2,048 8,192 127 64
Page-Table Parameters?
Corresponding
Page Table Page-
Number of Table
Pages Maximum Usable Increment
in Segment |Size (Bytes)|Length Code| (Bytes)
256 1,024 15 64
Explanation :

1 A virtual address specified by the program in the 24-bit
addressing mode consists of a 24-bit value embedded in a
31-bit address.

2 The page-table size is independent of the virtual address
size.

Figure 3-9. Sizes of Segment Tables and Page

Tables

Translation Process

This section describes the translation process as it
is performed implicitly before a virtual address is
used to access main storage. Explicit translation,
which is the process of translating the operand
address of LOAD REAL ADDRESS and TEST
PROTECTION, is the same, except that segment-
translation and page-translation exceptions do not
occur; such conditions are instead indicated by the
condition code. Translation of the operand
address of LOAD REAL ADDRESS also differs in
that the CPU may be in the real mode and the
translation-lookaside buffer is not used.

Translation of a virtual address is performed by
means of a segment table and a page table, both
of which reside in real or absolute storage. It is
controlled by the DAT-mode bit and the address-
space-control bits, all in the PSW. The translation
tables are designated by fields in control registers
1, 7, and 13 and as specified by the access regis-
ters.

Chapter 3. Storage 3-31

Effective Segment-Table Designation

The segment-table designation used for a partic-
ular address translation is called the effective
segment-table designation. Accordingly, when a
primary virtual address is translated, the contents
of control register 1 are used as the effective
segment-table designation. Similarly, for a sec-
ondary virtual address, the contents of control reg-
ister 7 are used; for an AR-specified virtual
address, the segment-table designation specified
by the access register is used; and for a home
virtual address, the contents of control register 13
are used.

The segment-index portion of the virtual address
is used to select an entry from the segment table,
the starting address and length of which are speci-
fied by the effective segment-table designation.
This entry designates the page table to be used.

The page-index portion of the virtual address is
used to select an entry from the page table. This
entry contains the leftmost bits of the real address
that represents the translation of the virtual
address and provides the page-protection bit.

3-32 ESA/390 Principles of Operation

The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the
real address.

If the | bit is one in either the segment-table entry
or the page-table entry, the entry is invalid, and
the translation process cannot be completed for
this virtual address. A segment-translation or
page-translation exception is recognized.

In order to eliminate the delay associated with ref-
erences to translation tables in real or absolute
storage, the information fetched from the tables
normally is also placed in a special buffer, the
translation-lookaside buffer (TLB), and subsequent
translations involving the same table entries may
be performed by using the information recorded in
the TLB. The operation of the TLB is described in
[‘Translation-Lookaside Buffer” on page 3-35|

Whenever access to real or absolute storage is
made during the address-translation process for
the purpose of fetching an entry from a segment
table or page table, key-controlled protection does
not apply.

The translation process, including the effect of the
TLB, is shown graphically in |Figure 3-10 on|

Control Register

ASN-Second Table

1, 7, or 13 Entry Virtual Address
PSTD, SSTD, or HSTD AR-Specified STD SX PX BX
(x4) (x4)
] <
Effective STD v
STO STL
(x4096)
Segment Table

_,
|

R/A PTO PTL

(x64)
v
v
< =E|<—
Translation
Lookaside
v Buffer (TLB)
Page Table

_,H
E| —> >

R/A PFRA PFRA

R/A: Address is either real or absolute

v
A\

Figure 3-10 (Part 1 of 2). Translation Process

Real Address

Chapter 3. Storage

3-33

Control register 1 provides the primary segment-table designation for
translation of a primary virtual address, control register 7 provides

the secondary segment-table designation for translation of a secondary
virtual address, and control register 13 provides the home segment-table
designation for translation of a home virtual address. An ASN-second-
table entry provides an AR-specified (access-register-specified) segment-
table designation for translation of an AR-specified virtual address.

Information, which may include portions of the virtual address and the
effective segment-table origin, is used to search the TLB.

If a match exists, the page-frame real address from the TLB is used in
forming the real address.

If no match exists, table entries in real or absolute storage are fetched.
The resulting fetched entries, in conjunction with the search information,
are used to translate the address and may be used to form an entry in the

TLB.
Figure 3-10 (Part 2 of 2). Translation Process

Inspection of Control Register 0

The interpretation of the virtual address for trans-
lation purposes requires that there be a valid
translation format specified by bits 8-12 of control
register 0. If bits 8-12 contain an invalid code, a
translation-specification exception is recognized.

Segment-Table Lookup

The segment-index portion of the virtual address,
in conjunction with the segment-table origin con-
tained in the effective segment-table designation,
is used to select an entry from the segment table.

The 31-bit address of the segment-table entry in
real or absolute storage is obtained by appending
12 zeros to the right of bits 1-19 of the effective
segment-table designation and adding the
segment index with two rightmost and 18 leftmost
zeros appended. When a carry into bit position O
occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 231 - 1 to
zero. All 31 bits of the address are used, regard-
less of whether the current PSW specifies the
24-bit or 31-bit addressing mode.

As part of the segment-table-lookup process, bits
1-7 of the virtual address are compared against
the segment-table length in bit positions 25-31 of
the effective segment-table designation to estab-
lish whether the addressed entry is within the
segment table. If the value in the segment-table-
length field is less than the value in the corre-

3-34 ESA/390 Principles of Operation

sponding bit positions of the virtual address, a
segment-translation exception is recognized. The
comparison against the segment-table length may
be omitted if a segment-table entry in the
translation-lookaside buffer is used in the trans-
lation.

All four bytes of the segment-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the segment-table entry designates a
location which is not available in the configuration,
an addressing exception is recognized, and the
unit of operation is suppressed.

Bit 26 of the entry fetched from the segment table
specifies whether the corresponding segment is
available. This bit is inspected, and, if it is one, a
segment-translation exception is recognized. If bit
0 of the entry is one, a translation-specification
exception is recognized. A translation-
specification exception is also recognized if
(1) the private-space control, bit 23, in the effec-
tive segment-table designation is one and (2) the
common-segment bit, bit 27, in the entry fetched
from the segment table is one.

When no exceptions are recognized in the
process of segment-table lookup, the entry fetched
from the segment table designates the beginning
and specifies the length of the corresponding page
table.

The common-segment bit in the entry fetched from
the segment table is further used only for the
purpose of forming a TLB entry (see
[Entries” on page 3-37).

Page-Table Lookup

The page-index portion of the virtual address, in
conjunction with the page-table origin contained in
the segment-table entry, is used to select an entry
from the page table.

The 31-bit address of the page-table entry in real
or absolute storage is obtained by appending six
zeros to the right of the page-table origin and
adding the page index, with two rightmost and 21
leftmost zeros appended. A carry into bit position
0 may cause an addressing exception to be
recognized, or the carry may be ignored, causing
the page table to wrap from 231 - 1 to zero. All
31 bits of the address are used, regardless of
whether the current PSW specifies the 24-bit or
31-bit addressing mode.

As part of the page-table-lookup process, the four
leftmost bits of the page index are compared
against the page-table length, bits 28-31 of the
segment-table entry, to establish whether the
addressed entry is within the table. If the value in
the page-table-length field is less than the value in
the four leftmost bit positions of the page-index
field, a page-translation exception is recognized.

All four bytes of the page-table entry appear to be
fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection.
When the storage address generated for fetching
the page-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the unit of operation
is suppressed.

The entry fetched from the page table indicates
the availability of the page and contains the left-
most bits of the page-frame real address. The
page-invalid bit is inspected to establish whether
the corresponding page is available. If this bit is
one, a page-translation exception is recognized. If
bit position 0, 20, or 23 contains a one, a
translation-specification exception is recognized.

Formation of the Real Address

When no exceptions in the translation process are
encountered, the page-frame real address
obtained from the page-table entry and the byte-
index portion of the virtual address are concat-
enated, with the page-frame real address forming
the leftmost part. The result is the real storage
address which corresponds to the virtual address.
All 31 bits of the address are used, regardless of
whether the current PSW specifies the 24-bit or
31-bit addressing mode.

Recognition of Exceptions during
Translation

Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when infor-
mation contained in control registers or table
entries is used for translation and is found to be
incorrect.

The information pertaining to DAT is considered to
be used when an instruction is executed with DAT
on or when INVALIDATE PAGE TABLE ENTRY or
LOAD REAL ADDRESS is executed. The infor-
mation is not considered to be used when the
PSW specifies DAT on but an /O, external,
restart, or machine-check interruption occurs
before an instruction is executed, or when the
PSW specifies the wait state. Only that informa-
tion required in order to translate a virtual address
is considered to be in use during the translation of
that address, and, in particular, addressing
exceptions that would be caused by the use of a
segment-table designation are not recognized
when that segment-table designation is not the
one actually used in the translation.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than
one is applicable, is provided in [‘Recognition of|

[Access Exceptions” on page 6-34}

Translation-Lookaside Buffer

To enhance performance, the dynamic-address-
translation mechanism normally is implemented
such that some of the information specified in the
segment and page tables is maintained in a
special buffer, referred to as the translation-
lookaside buffer (TLB). The CPU necessarily
refers to a DAT-table entry in real or absolute

Chapter 3. Storage 3-35

storage only for the initial access to that entry.
This information may be placed in the TLB, and
subsequent translations may be performed by
using the information in the TLB. The presence of
the TLB affects the translation process to the
extent that (1) a modification of the contents of a
table entry in real or absolute storage does not
necessarily have an immediate effect, if any, on
the translation, and (2) the comparison against
the segment-table length in the effective segment-
table designation may be omitted if a TLB
segment-table entry is used. In a multiple-CPU
configuration, each CPU has its own TLB.

Entries within the TLB are not explicitly address-
able by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is
permissible. Furthermore, information in the TLB
may be cleared under conditions additional to
those for which clearing is mandatory.

TLB Structure

The description of the logical structure of the TLB
covers the implementation by all systems oper-
ating as defined by ESA/390. The TLB entries are
considered as being of two types: TLB segment-
table entries and TLB page-table entries. A TLB
entry is considered as containing within it both the
information obtained from the table entry in real or
absolute storage and the attributes used to fetch
the entry from storage.

Note: The following sections describe the condi-
tions under which information may be placed in
the TLB, the conditions under which information
from the TLB may be used for address translation,
and how changes to the translation tables affect
the translation process.

Formation of TLB Entries

The formation of TLB entries and the effect of any
manipulation of the contents of a table entry in
real or absolute storage by the program depend
on whether the entry is attached to a particular
CPU and on whether the entry is valid.

The attached state of a table entry denotes that
the CPU to which it is attached can attempt to use
the table entry for implicit address translation.
The table entry may be attached to more than one
CPU at a time.

3-36 ESA/390 Principles of Operation

The valid state of a table entry denotes that the
segment or page associated with the table entry is
available. An entry is valid when the segment-
invalid bit or page-invalid bit in the entry is zero.

A segment-table entry or a page-table entry may
be placed in the TLB whenever the entry is
attached and valid and would not cause a
translation-specification exception if used for trans-
lation.

A segment-table entry is attached when all of the
following conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors which
would cause an early exception to be recog-
nized.

3. The current translation format, bits 8-12 in
control register 0, is valid.

4. The entry meets the requirements in a, b, c,
or d below.

a. The entry is within the segment table des-
ignated by the primary segment-table des-
ignation in control register 1, and the CPU
is not in the home-space mode.

b. The entry is within the segment table des-
ignated by the secondary segment-table
designation in control register 7 and either
of the following requirements is met:

e The CPU is in the secondary-space
mode or access-register mode.

e The CPU is in the primary-space
mode, and the secondary-space
control, bit 5 of control register 0, is
one.

c. The entry is within a segment table for
which the designation is in either an ALB
ASN-second-table entry or an
ASN-second-table entry which can be
placed in the ALB, and the CPU is in the
access-register mode. See
[‘ART-Lookaside Buffer” on page 5-51] for
the meaning of the terminology used here.

d. The entry is within the segment table
specified by the home segment-table des-
ignation in control register 13, and the
CPU is not in the secondary-space mode.

A page-table entry is attached when it is within the
page table designated by either a usable TLB
segment-table entry or by an attached and valid
segment-table entry which would not cause a
translation-specification exception if used for trans-
lation. A usable TLB segment-table entry is
explained in the next section.

Use of TLB Entries

The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. Also, the usable state of a
TLB segment-table entry is a factor in determining
whether a page-table entry is attached.

A TLB segment-table entry is in the usable state
when all of the following conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors which
would cause an early exception to be recog-
nized.

3. The current translation format, bits 8-12 in
control register 0, is valid.

4. The TLB segment-table entry meets at least
one of the following requirements:

a. The common-segment bit is one in the
TLB entry.

b. The segment-table-origin field in the TLB
entry is the same as the current PSTO,
and the CPU is not in the home-space
mode.

c. The segment-table-origin field in the TLB
entry is the same as the current SSTO,
and either of the following requirements is
met:

e The CPU is in the secondary-space
mode or access-register mode.

e The CPU is in the primary-space
mode, and the secondary-space
control, bit 5 of control register O, is
one.

d. The segment-table-origin field in the TLB
entry is the same as one that can be
obtained from an ASN-second-table entry
by applying the access-register-translation
process to the contents of an access reg-
ister, and the CPU is in the access-
register mode.

e. The segment-table-origin field in the TLB
entry is the same as the current HSTO,
and the CPU is not in the secondary-
space mode.

A TLB segment-table entry may be used for
implicit address translation only when the entry is
in the usable state, the segment index of the entry
matches the segment index of the virtual address
to be translated, and either the common-segment
bit is one in the TLB entry or the segment-table-
origin field in the TLB entry matches the segment-
table origin used to select it. However, a TLB
segment-table entry is not used if the common-
segment bit is one in the entry and the private-
space-control bit is one in the segment-table
designation used to select the entry, even if the
segment-table-origin fields in the entry and the
designation match.

A TLB page-table entry is in the usable state
when the page-table-origin field in the TLB page-
table entry matches the page-table-origin field in a
usable TLB segment-table entry or an attached
and valid segment-table entry which would not
cause a translation-specification exception if used
for translation, and the page-index field in the TLB
page-table entry is within the range permitted by
the page-table-length field in the segment-table
entry.

A TLB page-table entry may be used for implicit
address translation only when the TLB entry is in
the usable state as selected by the segment-table
entry being used and only when the page index of
the TLB page-table entry matches the page index
of the virtual address being translated.

The operand address of LOAD REAL ADDRESS
is translated without the use of the TLB contents.
Translation in this case is performed by the use of
the designated tables in real or absolute storage.

Programming Notes:

1. Although a table entry may be copied into the
TLB only when the table entry is both valid
and attached, the copy may remain in the TLB
even when the table entry itself is no longer
valid or attached.

2. No entries can be copied into the TLB when
DAT is off because the table entries at this
time are not attached. In particular, trans-
lation of the operand address of LOAD REAL

Chapter 3. Storage 3-37

ADDRESS with DAT off does not cause
entries to be placed in the TLB.

Conversely, when DAT is on, information may
be copied into the TLB from all translation-
table entries that could be used for address
translation, given the current translation
parameters, the setting of the address-space-
control bits, the setting of the secondary-
space-control bit, and the contents of the
access registers. The loading of the TLB
does not depend on whether the entry is used
for translation as part of the execution of the
current instruction, and such loading can
occur when the wait state is specified.

3. More than one copy of a table entry may exist
in the TLB. For example, some implementa-
tions may cause a copy of a valid table entry
to be placed in the TLB for each segment-
table origin by which the entry becomes
attached.

Modification of Translation Tables

When an attached and invalid table entry is made
valid and no usable entry for the associated virtual
address is in the TLB, the change takes effect no
later than the end of the current unit of operation.
Similarly, when an unattached and valid table
entry is made attached and no usable entry for the
associated virtual address is in the TLB, the
change takes effect no later than the end of the
current unit of operation.

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries
which qualify for substitution for that entry, an
attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
unpredictable results may occur, to the following
extent. The use of the new value may begin
between instructions or during the execution of an
instruction, including the instruction that caused
the change. Moreover, until the TLB is cleared of
entries which qualify for substitution for that entry,
the TLB may contain both the old and the new
values, and it is unpredictable whether the old or
new value is selected for a particular access. If
both old and new values of a segment-table entry
are present in the TLB, a page-table entry may be
fetched by using one value and placed in the TLB
associated with the other value. If the new value
of the entry is a value which would cause an
exception, the exception may or may not cause an
interruption to occur. If an interruption does occur,

3-38 ESA/390 Principles of Operation

the result fields of the instruction may be changed
even though the exception would normally cause
suppression or nullification.

Entries are cleared from the TLB in accordance
with the following rules:

1. All entries are cleared from the TLB by the
execution of PURGE TLB and SET PREFIX
and by CPU reset.

2. Selected entries are cleared from all TLBs in
the configuration by the execution of INVALI-
DATE PAGE TABLE ENTRY by any of the
CPUs in the configuration.

3. Some or all TLB entries may be cleared at
times other than those required by PURGE
TLB, SET PREFIX, CPU reset, and INVALI-
DATE PAGE TABLE ENTRY.

Programming Notes:

1. Entries in the TLB may continue to be used
for translation after the table entries from
which they have been formed have become
unattached or invalid. These TLB entries are
not necessarily removed unless explicitly
cleared from the TLB.

A change made to an attached and valid entry
or a change made to a table entry that causes
the entry to become attached and valid is
reflected in the translation process for the next
instruction, or earlier than the next instruction,
unless a TLB entry qualifies for substitution for
that table entry. However, a change made to
a table entry that causes the entry to become
unattached or invalid is not necessarily
reflected in the translation process until the
TLB is cleared of entries which qualify for sub-
stitution for that table entry.

2. Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of instruction execution. Con-
sequently, a segment-translation or page-
translation exception may be indicated when a
table entry is invalid at the start of execution
even if the instruction would have validated
the table entry it uses and the table entry
would have appeared valid if the instruction
was considered to process the operands one
byte at a time.

3. A change made to an attached table entry,
except to set the | bit to zero or to alter the

rightmost byte of a page-table entry, may
produce unpredictable results if that entry is
used for translation before the TLB is cleared
of all copies of that entry. The use of the new
value may begin between instructions or
during the execution of an instruction,
including the instruction that caused the
change. When an instruction, such as MOVE
(MVC), makes a change to an attached table
entry, including a change that makes the entry
invalid, and subsequently uses the entry for
translation, a changed entry is being used
without a prior clearing of the entry from the
TLB, and the associated unpredictability of
result values and of exception recognition
applies.

Manipulation of attached table entries may
cause spurious table-entry values to be
recorded in a TLB. For example, if changes
are made piecemeal, modification of a valid
attached entry may cause a partially updated
entry to be recorded, or, if an intermediate
value is introduced in the process of the
change, a supposedly invalid entry may tem-
porarily appear valid and may be recorded in
the TLB. Such an intermediate value may be
introduced if the change is made by an 1/O
operation that is retried, or if an intermediate
value is introduced during the execution of a
single instruction.

As another example, if a segment-table entry
is changed to designate a different page table
and used without clearing the TLB, then the
new page-table entries may be fetched and
associated with the old page-table origin. In
such a case, execution of INVALIDATE PAGE
TABLE ENTRY designating the new page-
table origin will not necessarily clear the page-
table entries fetched from the new page table.

. To facilitate the manipulation of translation
tables, INVALIDATE PAGE TABLE ENTRY is
provided, which sets the | bit in a page-table
entry to one and clears all TLBs in the config-
uration of entries formed from that table entry.

INVALIDATE PAGE TABLE ENTRY is useful
for setting the | bit to one in a page-table entry
and causing TLB copies of the entry to be
cleared from the TLB of each CPU in the con-
figuration. The following aspects of the TLB
operation should be considered when using
INVALIDATE PAGE TABLE ENTRY. (See

also the programming notes following INVALI-
DATE PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be executed before making any
change to a page-table entry other than
changing the rightmost byte; otherwise,
the selective clearing portion of INVALI-
DATE PAGE TABLE ENTRY may not
clear the TLB copies of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INVALI-
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of the copies, if
any, of the segment-table entry desig-
nating the page table. When it is desired
to invalidate and clear the TLB of a
segment-table entry, the rules in note 5
below must be followed.

c. When a large number of page-table
entries are to be invalidated at a single
time, the overhead involved in using
PURGE TLB and in following the rules in
note 5 below may be less than in issuing
INVALIDATE PAGE TABLE ENTRY for
each page-table entry.

5. Manipulation of table entries should be in

accordance with the following rules. If these
rules are complied with, translation is per-
formed as if the table entries from real or
absolute storage were always used in the
translation process.

a. A valid table entry must not be changed
while it is attached to any CPU except
either to invalidate the entry, by using
INVALIDATE PAGE TABLE ENTRY, or to
alter bits 24-31 of a page-table entry.

b. When any change is made to a table entry
other than a change to bits 24-31 of a
page-table entry, each CPU which may
have a TLB entry formed from that entry
must execute PURGE TLB or SET
PREFIX or perform CPU reset, after the
change occurs and prior to the use of that
entry for implicit translation by that CPU,
except that the purge is unnecessary if the
change was made by using INVALIDATE
PAGE TABLE ENTRY.

c. When any change is made to an invalid
table entry in such a way as to allow inter-
mediate valid values to appear in the

Chapter 3. Storage 3-39

entry, each CPU to which the entry is
attached must execute PURGE TLB or
SET PREFIX or perform CPU reset, after
the change occurs and prior to the use of
the entry for implicit address translation by
that CPU.

d. When any change is made to a segment-
table or page-table length, each CPU to
which that table has been attached must
execute PTLB after the length has been
changed but before that table becomes
attached again to the CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
CPU which does not have any usable TLB
copies for that entry. Similarly, when an
invalid segment-table entry is made valid
without introducing intermediate valid values,
the TLB need not be cleared in a CPU which
does not have any usable TLB copies for that
segment-table entry and which does not have
any usable TLB copies for the page-table
entries attached by it.

The execution of PURGE TLB and SET
PREFIX may have an adverse effect on the
performance of some models. Use of these
instructions should, therefore, be minimized in
conformity with the above rules.

Address Summary

Addresses Translated

Most addresses that are explicitly specified by the
program and are used by the CPU to refer to
storage are instruction or logical addresses and
are subject to implicit translation when DAT is on.
Analogously, the corresponding addresses indi-
cated to the program on an interruption or as the
result of executing an instruction are instruction or
logical addresses. The operand address of LOAD

3-40 ESA/390 Principles of Operation

REAL ADDRESS is explicitly translated, regard-
less of whether the PSW specifies DAT on or off.

Translation is not applied to quantities that are
formed from the values specified in the B and D
fields of an instruction but that are not used to
address storage. This includes operand
addresses in LOAD ADDRESS, LOAD ADDRESS
EXTENDED, MONITOR CALL, and the shifting
instructions. This also includes the addresses in
control registers 10 and 11 designating the
starting and ending locations for PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage keys
(operand addresses in SET STORAGE KEY
EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses. Similarly, the
addresses implicitly used by the CPU for such
sequences as interruptions are real addresses.

The addresses used by channel programs to
transfer data and to refer to CCWs or IDAWSs are
absolute addresses.

The handling of storage addresses associated
with DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in
[FAddress _Types” on page 3-3] Prefixing, when
provided, is applied after the address has been
translated by means of the dynamic-address-
translation facility. For a description of prefixing,
see [‘Prefixing” on page 3-14}

Handling of Addresses

The handling of addresses is summarized in
[Figure 3-11 on page 3-411 This figure lists all
addresses that are encountered by the program
and specifies the address type.

———

Virtual Addresses

- Address of storage operand for INSERT VIRTUAL STORAGE KEY

- Operand address in LOAD REAL ADDRESS

- Addresses of storage operands for MOVE TO PRIMARY and MOVE TO
SECONDARY

- Address stored in the word at real Tocation 144 on a program inter-
ruption for page-translation or segment-translation exception

- Linkage-stack-entry address in control register 15

- Backward stack-entry address in linkage-stack header entry

- Forward-section-header address in linkage-stack trailer entry

- Trap-control-block address in dispatchable-unit-control table

- Trap-save-area address and trap-program address in trap control
block

Instruction Addresses

- Instruction address in PSW

- Branch address

- Target of EXECUTE

- Address stored in the word at real location 152 on a program inter-
ruption for PER

- Address placed in general register by BRANCH AND LINK, BRANCH AND
SAVE, BRANCH AND SAVE AND SET MODE, BRANCH AND STACK, BRANCH IN
SUBSPACE GROUP, BRANCH RELATIVE AND SAVE, and PROGRAM CALL

- Address used in general register by BRANCH AND STACK.

- Address placed in general register by BRANCH AND SET AUTHORITY
executed in reduced-authority state

Logical Addresses

- Addresses of storage operands for instructions not otherwise
specified

- Address placed in general register 1 by EDIT AND MARK and TRANSLATE
AND TEST

- Addresses in general registers updated by MOVE LONG, MOVE LONG
EXTENDED, COMPARE LOGICAL LONG, and COMPARE LOGICAL LONG EXTENDED

- Addresses in general registers updated by CHECKSUM, COMPARE AND FORM
CODEWORD, and UPDATE TREE

- Address for TEST PENDING INTERRUPTION when the second-operand ad-
dress is nonzero

- Address of parameter 1ist of RESUME PROGRAM

Real Addresses

- Address of storage key for INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, and SET STORAGE KEY EXTENDED

- Address of storage operand for LOAD USING REAL ADDRESS, STORE USING
REAL ADDRESS, and TEST BLOCK

- The translated address generated by LOAD REAL ADDRESS

Figure 3-11 (Part 1 of 3). Handling of Addresses

Chapter 3. Storage

3-41

Real Addresses (Continued)

- Page-table origin in INVALIDATE PAGE TABLE ENTRY

- Page-frame real address in page-table entry

- Trace-entry address in control register 12

- ASN-first-table origin in control register 14

- ASN-second-table origin in ASN-first-table entry

- Authority-table origin in ASN-second-table entry, except when used
by access-register translation

- Linkage-table origin in control register 5 or primary ASN-second-
table entry!

- Entry-table origin in linkage-table entry

- Dispatchable-unit-control-table origin in control register 2

- Primary-ASN-second-table-entry origin in control register 51

- Base-ASN-second-table-entry origin and subspace-ASN-second-table-
entry origin in dispatchable-unit control table

- ASN-second-table-entry address in entry-table entry and access-1ist
entry

- PCF-entry-table origin at real locations 196-199

Permanently Assigned Real Addresses

- Address of the doubleword into which TEST PENDING INTERRUPTION
stores when the second-operand address is zero

- Addresses of PSWs, interruption codes, and the associated informa-
tion used during interruption

- Addresses used for machine-check Togout and save areas

- Address of PCF-entry-table origin

Addresses Which Are Unpredictably Real or Absolute

- Segment-table origin in control registers 1, 7, and 13 and in
access-register-specified segment-table designation

- Page-table origin in segment-table entry

- Address of segment-table entry or page-table entry provided by LOAD
REAL ADDRESS

- The dispatchable-unit or primary-space access-1list origin and the
authority-table origin (in the ASTE designated by the ALE used) used
by access-register translation

Figure 3-11 (Part 2 of 3). Handling of Addresses

3-42 ESA/390 Principles of Operation

Absolute Addresses

- Prefix value
- Channel-program address in ORB
- Data address in CCW

- CCW address in a CCW specifying transfer in channel
- Data address in IDAW

- Address 1imit specified in SET ADDRESS LIMIT

- CCW address in SCSW

Permanently Assigned Absolute Addresses

- Addresses used for the store-status function

Addresses Not Used to Reference Storage

- PER starting address in control register 10
- PER ending address in control register 11

to use the address to reference storage

- IDAW address in a CCW specifying indirect data addressing
- Measurement-block origin specified in SET CHANNEL MONITOR

- Addresses used by the store-status-at-address SIGNAL PROCESSOR order
- Failing-storage address stored in the word at real location 248

- Addresses of PSW and first two CCWs used for initial program loading

- Address stored in the word at real location 156 for a monitor event
- Address in shift instructions and other instructions specified not

Explanation:

origin is in the primary ASN-second-table entry.

1 When the address-space-function (ASF) control, bit 15 of control
register 0, is zero, control register 5 contains the linkage-table
origin. When the ASF control is one, control register 5 contains
the primary-ASN-second-table-entry origin, and the Tinkage-table

Figure 3-11 (Part 3 of 3). Handling of Addresses

Assigned Storage Locations 815

[Figure 3-12 on page 3-49 shows the format and
extent of the assigned locations in storage. The
locations are used as follows.

0-7 (Absolute Address)

Initial-Program-Loading PSW: The first
eight bytes read during the initial-
program-loading (IPL) initial-read opera-
tion are stored at locations 0-7. The 8-15
contents of these locations are used as
the new PSW at the completion of the
IPL operation. These locations may also
be used for temporary storage at the ini-
tiation of the IPL operation. 16-23

0-7 (Real Address)

Restart New PSW: The new PSW is
fetched from locations O0-7 during a
restart interruption.

(Absolute Address)

Initial-Program-Loading CCWI1: Bytes
8-15 read during the initial-program-
loading (IPL) initial-read operation are
stored at locations 8-15. The contents of
these locations are ordinarily used as the
next CCW in an IPL CCW chain after
completion of the IPL initial-read opera-
tion.

(Real Address)

Restart Old PSW: The current PSW is
stored as the old PSW at locations 8-15
during a restart interruption.

(Absolute Address)

Initial-Program-Loading CCWZ2:. Bytes
16-23 read during the initial-program
loading (IPL) initial-read operation are
stored at locations 16-23. The contents
of these locations may be used as

Chapter 3. Storage 3-43

24-31

32-39

40-47

48-55

56-63

88-95

96-103

104-111

112-119

120-127

3-44

another CCW in the IPL CCW chain to
follow IPL CCW1.

(Real Address)

External Old PSW: The current PSW is
stored as the old PSW at locations 24-31
during an external interruption.

(Real Address)

Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at
locations 32-39 during a supervisor-call
interruption.

(Real Address)

Program OIld PSW: The current PSW is
stored as the old PSW at locations 40-47
during a program interruption.

(Real Address)

Machine-Check Old PSW: The current
PSW is stored as the old PSW at
locations 48-55 during a machine-check
interruption.

(Real Address)

Input/Output Old PSW: The current
PSW is stored as the old PSW at
locations 56-63 during an /O inter-
ruption.

(Real Address)

External New PSW: The new PSW is
fetched from locations 88-95 during an
external interruption.

(Real Address)

Supervisor-Call New PSW: The new
PSW is fetched from locations 96-103
during a supervisor-call interruption.

(Real Address)

Program New PSW: The new PSW is
fetched from locations 104-111 during a
program interruption.

(Real Address)

Machine-Check New PSW: The new
PSW is fetched from locations 112-119
during a machine-check interruption.

(Real Address)

Input/Output New PSW: The new PSW
is fetched from locations 120-127 during
an /O interruption.

ESA/390 Principles of Operation

128-131

132-133

134-135

136-139

140-143

144-147

(Real Address)

External-Interruption Parameter. During
an external interruption due to service
signal or the external time reference
(ETR), the parameter associated with the
interruption is stored at locations
128-131.

(Real Address)

CPU Address: During an external inter-
ruption due to malfunction alert, emer-
gency signal, or external call, the CPU
address associated with the source of
the interruption is stored at locations
132-133. The CPU address is a 16-bit
unsigned binary integer. For all other
external-interruption conditions, zeros
are stored at locations 132-133.

(Real Address)

External-Interruption Code: During an
external interruption, the interruption
code is stored at locations 134-135.

(Real Address)

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at
locations 138-139. Zeros are stored at
location 136 and in the remaining bit
positions of location 137.

(Real Address)

Program-Interruption Identification:
During a program interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 141, and
the interruption code is stored at
locations 142-143. Zeros are stored at
location 140 and in the remaining bit
positions of location 141.

(Real Address)

Data-Exception Code (DXC): If the
basic-floating-point-extensions facility is
installed, then, during a program inter-
ruption due to a data exception, the
data-exception code is stored at location
147, and zeros are stored at locations
144-146. The DXC is described in

‘Data-Exception Code (DXC)” on|
page 6-15]

Translation-Exception Identification:
During a program interruption due to a
segment-translation exception or a page-
translation exception, the segment-index
and page-index portion of the virtual
address causing the exception is stored
at locations 144-147. This address is
sometimes referred to as the translation-
exception address. Bits 20-29 of the
address are unpredictable. Bits 30-31 of
the address are set to identify the
segment-table designation (STD) used in
the translation, as follows:

Bit Bit
30 31 Meaning

0 O Primary STD was used.

0 1 CPU was in the access-
register mode, and either the
access was an instruction fetch
or it was a storage-operand
reference that used an
AR-specified STD (the access
was not an implicit reference to
the linkage stack). The excep-
tion access id, real location
160, can be examined to
determine the STD used.
However, if the primary, sec-
ondary, or home STD was
used, bits 30 and 31 may be
set to 00, 10, or 11, respec-
tively, instead of to 01.

1 0 Secondary STD was used.

1 1 Home STD was used (includes
the case of an implicit refer-
ence to the linkage stack).

The CPU may avoid setting bits 30 and
31 to 01 by recognizing that the access
was an instruction fetch, that access-list-
entry token 00000000 or 00000001 hex
was used, or that the access-list-entry
token designated, through an access-list
entry, an ASN-second-table entry con-
taining an STD equal to the primary
STD, secondary STD, or home STD.

Bit O of location 144 is set to one if the
CPU was in either the primary-space
mode or the secondary-space mode and

the secondary STD was used; otherwise,
bit 0 is set to zero.

During a program interruption due to an
AFX-translation, ASX-translation,
primary-authority, or secondary-authority
exception, the ASN being translated is
stored at locations 146-147. Zeros are
stored at locations 144-145.

During a program interruption due to a
space-switch event, an identification of
the old instruction space is stored at
locations 146-147, and the old
instruction-space space-switch-event-
control bit is placed in bit position 0 and
zeros are placed in bit positions 1-15 of
locations 144-145. The identification and
bit stored are as follows:

e |f the CPU was in the primary-space,
secondary-space, or access-register
mode before the operation, the old
PASN, bits 16-31 of control register
4 before the operation, is stored at
locations 146-147, and the old
primary space-switch-event-control
bit, bit 0 of control register 1 before
the operation, is placed in bit posi-
tion O of locations 144-145.

e |f the CPU was in the home-space
mode before the operation, zeros are
stored at locations 146-147, and the
home space-switch-event-control bit,
bit O of control register 13, is placed
in bit position O of locations 144-145.

During a program interruption due to an
LX-translation or EX-translation excep-
tion recognized by PROGRAM CALL,
the PC number is stored in bit positions
12-31 of the word at locations 144-147.
Bits 0-11 are set to zeros.

During a program interruption due to an
EX-translation exception recognized by
PROGRAM CALL FAST, the PC number
is stored in bit positions 12-31 of the
word at locations 144-147. Bits 0-10 are
set to zeros, and bit 11 is set to one.

If the suppression-on-protection facility is
installed, then, during a program inter-
ruption due to a protection exception,
information is stored at locations

Chapter 3. Storage 3-45

148-149

150-151

152-155

156-159

160

3-46

144-147 as described in FSuppression on|
[Protection” on page 3-12|

(Real Address)

Monitor-Class Number. During a
program interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at location 148.

(Real Address)

PER Code: During a program inter-
ruption due to a PER event with PER 1,
the PER code is stored in bit positions
0-3 of locations 150-151, and zeros are
stored in bit positions 4-15. With PER 2,
the PER code is stored in hit positions
0-2 and 4 of locations 150-151, and
other information is or may be stored as
described in [‘ldentification of Cause” on|

(Real Address)

PER Address: During a program inter-
ruption due to a PER event, the PER
address is stored at locations 152-155.
Bit O of location 152 is set to zero.

(Real Address)

Monitor Code: During a program inter-
ruption due to a monitor event, the

monitor code is stored at locations
156-159.

(Real Address)

Exception Access Identification. During

a program interruption due to a segment-
translation exception or a page-
translation exception, an indication of the
address space to which the exception
applies may be stored at location 160. If
the CPU was in the access-register
mode and the access was an instruction
fetch, including a fetch of the target of an
EXECUTE instruction, zeros are stored
at location 160. If the CPU was in the
access-register mode and the access
was a storage-operand reference that
used an AR-specified segment-table
designation, the number of the access
register used is stored in bit positions
4-7 of location 160, and zeros are stored
in bit positions 0-3. (In either of the two
cases described so far, storing at

ESA/390 Principles of Operation

161

location 160 occurs regardless of the
value stored in bit positions 30 and 31 of
real locations 144-147.) If the CPU was
in the access-register mode but the
access was an implicit reference to the
linkage stack, or if the CPU was not in
the access-register mode, the contents
of location 160 are unpredictable.

During a program interruption due to an
ALEN-translation, ALE-sequence,
ASTE-validity, ASTE-sequence, or
extended-authority exception recognized
during access-register translation, the
number of the access register used is
stored in bit positions 4-7 of location
160, and zeros are stored in bit positions
0-3. During a program interruption due
to an ASTE-validity or ASTE-sequence
exception recognized during a subspace-
replacement operation, all zeros are
stored at location 160.

If the suppression-on-protection facility is
installed, then, during a program inter-
ruption due to a protection exception,
information is stored at location 160 as
described in ['Suppression on Protection’]

on page 3-12|

(Real Address)

PER Access Identification. During a
program interruption due to a PER
storage-alteration event, an indication of
the address space to which the event
applies may be stored at location 161. If
the access used an AR-specified
segment-table designation, the number
of the access register used is stored in
bit positions 4-7 of location 161, and
zeros are stored in bit positions 0-3.
However, with PER 1, the contents of
location 161 are unpredictable if the
instruction that caused the event turned
DAT off. Also, with PER 1 or PER 2, the
contents of location 161 are unpredict-
able if (1) the CPU was in the access-
register mode but the access was an
implicit reference to the linkage stack,
(2) the CPU was not in the access-
register mode, or (3) bit 2 of the PER
code is one but indicates a store-using-
real-address event instead of a storage-
alteration event.

184-187

188-191

196-199

212-215

212-215

(Real Address)

Subsystem-Identification Word: During
an /O interruption, the subsystem-
identification word is stored at locations
184-187.

(Real Address)

I/O-Interruption Parameter. During an
I/O interruption, the interruption param-
eter from the associated subchannel is
stored at locations 188-191.

(Real Address)

PCF-Entry-Table Origin: The real origin
of the PCF entry table is obtained by
PROGRAM CALL FAST from real
locations 196-199.

(Absolute Address)

Store-Status Extended-Save-Area
Address. During the execution of the
store-status operation when the basic-
floating-point-extensions facility is
installed and the extended-save-area
control, bit 2 of control register 14, is
one, bits 1-19 of locations 212-215, with
12 zeros appended on the right, are
used as the absolute address of a
4096-byte extended save area. Bits O
and 20-31 of the locations are reserved
and should be zeros. They are ignored
when forming the address of the
extended save area. Bits 1-19 must not
be all zeros; otherwise, storing is not
performed in the extended save area.

(Real Address)

Machine-Check Extended-Save-Area
Address: During a machine-check inter-
ruption when the basic-floating-point-
extensions facility is installed and the
extended-save-area control, bit 2 of
control register 14, is one, bits 1-19 of
locations 212-215, with 12 zeros
appended on the right, are used as the
absolute address of a 4096-byte
extended save area. Bits 0 and 20-31 of
the locations are reserved and should be
zeros. They are ignored when forming
the address of the extended save area.
Bits 1-19 must not be all zeros; other-
wise, storing is not performed in the
extended save area.

216-223

216-223

224-231

224-231

232-239

244-247

248-251

256-263

(Absolute Address)

Store-Status CPU-Timer Save Area:
During the execution of the store-status
operation, the contents of the CPU timer
are stored at locations 216-223.

(Real Address)

Machine-Check CPU-Timer Save Area:
During a machine-check interruption, the
contents of the CPU timer are stored at
locations 216-223.

(Absolute Address)

Store-Status Clock-Comparator Save
Area. During the execution of the store-
status operation, the contents of the
clock comparator are stored at locations
224-231.

(Real Address)

Machine-Check Clock-Comparator Save

Area: During a machine-check inter-
ruption, the contents of the clock
comparator are stored at locations
224-231.

(Real Address)
Machine-Check-Interruption Code:

During a machine-check interruption, the

machine-check-interruption code is
stored at locations 232-239.

(Real Address)

External-Damage Code: During a
machine-check interruption due to
certain external-damage conditions,

depending on the model, an external-
damage code may be stored at locations
244-247.

(Real Address)

Failing-Storage Address: During a
machine-check interruption, a failing-
storage address may be stored at
locations 248-251. Bit 0 of location 248
is set to zero.

(Absolute Address)

Store-Status PSW Save Area: During
the execution of the store-status opera-
tion, the contents of the current PSW are
stored at locations 256-263.

Chapter 3. Storage 3-47

256-271

264-267

288-351

288-351

352-383

352-383

384-447

(Real Address)

Fixed-Logout Area. Depending on the
model, logout information may be stored
at locations 256-271 during a machine-
check interruption.

(Absolute Address)

Store-Status Prefix Save Area. During
the execution of the store-status opera-
tion, the contents of the prefix register
are stored at locations 264-267.

(Absolute Address)

Store-Status Access-Register Save Area.
During the execution of the store-status
operation, the contents of the access
registers are stored at locations 288-351.

(Real Address)

Machine-Check Access-Register Save
Area: During a machine-check inter-
ruption, the contents of the access regis-
ters are stored at locations 288-351.

(Absolute Address)

Store-Status Floating-Point-Register
Save Area: During the execution of the
store-status operation, the contents of
the floating-point registers are stored at
locations 352-383.

(Real Address)

Machine-Check Floating-Point-Register
Save Area: During a machine-check
interruption, the contents of the floating-
point registers are stored at locations
352-383.

(Absolute Address)

Store-Status General-Register Save
Area: During the execution of the store-

3-48 ESA/390 Principles of Operation

status operation, the contents of the
general registers are stored at locations
384-447.

384-447 (Real Address)

Machine-Check General-Register Save
Area: During a machine-check inter-
ruption, the contents of the general reg-
isters are stored at locations 384-447.

448-511 (Absolute Address)

Store-Status Control-Register Save Area.
During the execution of the store-status
operation, the contents of the control
registers are stored at locations 448-511.

448-511 (Real Address)

Machine-Check Control-Register Save
Area:. During a machine-check inter-
ruption, the contents of the control regis-
ters are stored at locations 448-511.

Programming Notes:

1. When the CPU is in the access-register mode,
some instructions, such as MVCL, which
address operands in more than one address
space, may cause a storage-alteration PER
event in one address space concurrently with
a segment-translation exception or a page-
translation exception in another address
space. The access registers used to cause
these conditions in such a case are different.
In order to identify both access registers, two
access identifications, namely the exception
access identification and the PER access
identification, are provided.

2. STORE THEN AND SYSTEM MASK can
cause a PER storage-alteration event and turn
DAT off, in which case, with PER 1, the PER
access identification at real location 161 is
unpredictable.

Hex Dec

0 0 | Initial-Program-Loading PSW; or Restart New PSW
4 4

8 8 | Initial-Program-Loading CCW1; or Restart O1d PSW
c 12

106 16 | Initial-Program Loading CCW2
14 20

18 24 | External 01d PSW

1cC 28

20 32 | Supervisor-Call 01d PSW
24 36

28 40 | Program 01d PSW

2C 44

30 48 | Machine-Check 01d PSW
34 52

38 56 | Input/Output 01d PSW

3C 60

40 64

44 68

48 72

4C 76

50 80

54 84

58 88 | External New PSW

5C 92

60 96 | Supervisor-Call New PSW
64 100

68 104 | Program New PSW

6C 108

70 112 | Machine-Check New PSW
74 116

78 120 | Input/Output New PSW

7C 124

Figure 3-12 (Part 1 of 4). Assigned Storage Locations

Chapter 3. Storage

3-49

Hex Dec

80 128 | External-Interruption Parameter

84 132 | CPU Address External-Interruption Code

88 136 [0 0O O0OO0OO00O0OO0O[ILC|O| SVC-Interruption Code

8C 140 (00O OO0O0O000OOO|ILC|O| Program-Interruption Code

90 144 | Data-Exception Code or Translation-Exception Identification

94 148 | Monitor-Class Number 'PER CdelATMIDISII

98 152 | PER Address

9C 156 | Monitor Code

A0 160 |Exc. Access ID | PER Access ID '

A4 164

A8 168

AC 172

BO 176

B4 180

B8 184 | Subsystem-Identification Word

BC 188 | I/0-Interruption Parameter

o 192

C4 196 | PCF-Entry-Table Origin

€8 200

CC 204

DO 208

D4 212 | Store-Status Extended-Save-Area Address; or Machine-Check
Extended-Save-Area Address

D8 216 | Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer
Save Area

DC 220

E@ 224 | Store-Status Clock-Comparator Save Area; or Machine-Check
Clock-Comparator Save Area

E4 228

E8 232 | Machine-Check Interruption Code

EC 236

FO 240

F4 244 | External-Damage Code

F8 248 | Failing-Storage Address

FC 252

Figure 3-12 (Part 2 of 4). Assigned Storage Locations

3-50

ESA/390 Principles of Operation

Hex Dec

100 256 | Store-Status PSW Save Area; or Fixed-Logout Area (Part 1)
104 260

108 264 | Store-Status Prefix Save Area; or Fixed-Logout Area (Part 2)
10C 268 | Fixed-Logout Area (Part 3)

110 272

11C 284

120 288 | Store-Status Access-Register Save Area; or Machine-Check
Access-Register Save Area

124 292

128 296

12C 300

154 340
158 344
15C 348

160 352
164 356
168 360
16C 364
170 368
174 372
178 376
17C 380

Store-Status Floating-Point-Register Save Area; or Machine-
Check Floating-Point-Register Save Area

180 384
184 388
188 392
18C 396

1B4 436
1B8 440

1BC 444

Store-Status General-Register Save Area; or Machine-Check
General-Register Save Area

Figure 3-12 (Part 3 of 4). Assigned Storage Locations

Chapter 3. Storage

3-51

Hex

Dec

1C0O
1C4
1C8
1CC

1F4
1F8
1FC

448 | Store-Status Control-Register Save Area; or Machine-Check
Control-Register Save Area

452
456

460

500
504
508

Figure 3-12 (Part 4 of 4). Assigned Storage Locations

3-52

ESA/390 Principles of Operation

Chapter 4. Control

Stopped, Operating, Load, and Check-Stop

States 4-1
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-2

Program-Status Word 4-3
Program-Status-Word Format 4-5
Control Registers 4-6
Tracing 4-10
Control-Register Allocation 4-10
Trace Entries 4-11
Operation 4-14
Program-Event Recording 4-14

Control-Register Allocation and

Segment-Table Designation 4-15
Operation 4-16
Identification of Cause 4-17
Priority of Indication 4-20
Storage-Area Designation 4-21
PEREvents 4-21
Successful Branching 4-21
Instruction Fetching 4-22
Storage Alteration 4-22
General-Register Alteration 4-23
Store Using Real Address 4-24
Indication of PER Events Concurrently
with Other Interruption Conditions . . . 4-24

Timing 4-26
Time-of-Day Clock 4-26
Format 4-27
States 4-27
Changes in Clock State 4-28
Setting and Inspecting the Clock 4-28
TOD Programmable Register 4-29
TOD-Clock Synchronization 4-31
Clock Comparator 4-32
CPU Timer 4-33
Externally Initiated Functions 4-34
Resets 4-34
CPUReset 4-37
Initial CPU Reset 4-38
Subsystem Reset 4-38
ClearReset 4-38
Power-On Reset 4-39
Initial Program Loading 4-39
Store Status 4-40
Multiprocessing 4-41
Shared Main Storage 4-41
CPU-Address ldentification 4-41
CPU Signaling and Response 4-41
Signal-Processor Orders 4-41
Conditions Determining Response 4-45
Conditions Precluding Interpretation of
the Order Code 4-45
Status Bits 4-46

This chapter describes in detail the facilities for
controlling, measuring, and recording the opera-
tion of one or more CPUs.

Stopped, Operating, Load, and
Check-Stop States

The stopped, operating, load, and check-stop
states are four mutually exclusive states of the
CPU. When the CPU is in the stopped state,
instructions and interruptions, other than the
restart interruption, are not executed. In the oper-
ating state, the CPU executes instructions and
takes interruptions, subject to the control of the
program-status word (PSW) and control registers,
and in the manner specified by the setting of the
operator-facility rate control. The CPU is in the

load state during the initial-program-loading opera-
tion. The CPU enters the check-stop state only as
the result of machine malfunctions.

A change between these four CPU states can be
effected by use of the operator facilities or by
acceptance of certain SIGNAL PROCESSOR
orders addressed to that CPU. The states are not
controlled or identified by bits in the PSW. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator, respec-
tively. These three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is in the
operating state or the load state. The TOD clock
is not affected by the state of any CPU.

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999 4-1

Stopped State

The CPU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

¢ The stop key is activated while the CPU is in
the operating state.

e The CPU accepts a stop or stop-and-store-
status order specified by a SIGNAL
PROCESSOR instruction addressed to this
CPU while it is in the operating state.

¢ The CPU has finished the execution of a unit
of operation initiated by performing the start
function with the rate control set to the
instruction-step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at
the end of the current unit of operation. When the
wait-state bit of the PSW is one, the transition
takes place immediately, provided no interruptions
are pending for which the CPU is enabled. In the
case of interruptible instructions, the amount of
data processed in a unit of operation depends on
the particular instruction and may depend on the
model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions
occur while the CPU is still in the operating state.
They cause the old PSW to be stored and the
new PSW to be fetched before the stopped state
is entered. While the CPU is in the stopped state,
interruption conditions remain pending.

The CPU is also placed in the stopped state
when:

e The CPU reset is completed. However, when
the reset operation is performed as part of
initial program loading for this CPU, then the
CPU is placed in the load state and does not
necessarily enter the stopped state.

¢ An address comparison indicates equality and
stopping on the match is specified.

The execution of resets is described in
[on page 4-34] and address comparison is
described in [|‘Address-Compare Controls” on|

page 12-1]

If the CPU is in the stopped state when an INVAL-
IDATE PAGE TABLE ENTRY instruction is exe-

4-2 ESA/390 Principles of Operation

cuted on another CPU in the configuration, the
clearing of TLB entries is completed before the
CPU leaves the stopped state.

Operating State

The CPU changes from the stopped state to the
operating state by means of the start function or
when a restart interruption (see |Chapter 6

“Interruptions’”) occurs.

The start function is performed if the CPU is in the
stopped state and (1) the start key associated
with that CPU is activated or (2) that CPU accepts
the start order specified by a SIGNAL
PROCESSOR instruction addressed to that CPU.
The effect of performing the start function is
unpredictable when the stopped state has been
entered by means of a reset.

When the rate control is set to the process posi-
tion and the start function is performed, the CPU
starts operating at normal speed. When the rate
control is set to the instruction-step position and
the wait-state bit is zero, one instruction or, for
interruptible instructions, one unit of operation is
executed, and all pending allowed interruptions
occur before the CPU returns to the stopped state.
When the rate control is set to the instruction-step
position and the wait-state bit is one, the start
function does not cause an instruction to be exe-
cuted, but all pending allowed interruptions occur
before the CPU returns to the stopped state.

Load State

The CPU enters the load state when the load-
normal or load-clear key is activated. (See [Initial
Program Loading” on page 4-39] See also [Initial
[Program Loading” on page 17-13]) If the initial-
program-loading operation is completed success-
fully, the CPU changes from the load state to the
operating state, provided the rate control is set to
the process position; if the rate control is set to
the instruction-step position, the CPU changes
from the load state to the stopped state.

Check-Stop State

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in [Chapter 11, “Machine-Check Handling. The
CPU leaves the check-stop state when CPU reset
is performed.

Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW-format error of the type that is recog-
nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Pending I/O operations may be initiated, and
active 1/0O operations continue to suspension
or completion, after the CPU enters the
stopped state. The interruption conditions due
to suspension or completion of I/O operations
remain pending when the CPU is in the
stopped state.

Program-Status Word

The current program-status word (PSW) in the
CPU contains information required for the exe-
cution of the currently active program. The PSW
is 64 bits in length and includes the instruction
address, condition code, and other control fields.
In general, the PSW is used to control instruction
sequencing and to hold and indicate much of the
status of the CPU in relation to the program cur-

rently being executed. Additional control and
status information is contained in control registers
and permanently assigned storage locations.

The status of the CPU can be changed by loading
a new PSW or part of a PSW.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to pre-
serve the status of the CPU, and then loading a
new PSW.

Execution of LOAD PSW, or the successful con-
clusion of the initial-program-loading sequence,
introduces a new PSW. The instruction address is
updated by sequential instruction execution and
replaced by successful branches. Other
instructions are provided which operate on a
portion of the PSW. [Figure 4-1 on page 4-4|
summarizes these instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the inter-
ruption or the execution of an instruction that
changes the PSW is completed. The interruption
for PER associated with an instruction that
changes the PSW occurs under control of the
PER mask that is effective at the beginning of the
operation.

Bits 0-7 of the PSW are collectively referred to as
the system mask.

Chapter 4. Control 4-3

Condition
Address- | Code and
Problem Space Program |[Addressing
System Mask| PSW Key State Control Mask Mode
(PSW Bits | (PSW Bits (PSW (PSW Bits | (PSW Bits (PSW

0-7) 8-11) Bit 15) 16-17) 18-23) Bit 32)
Instruction Saved| Set |Saved| Set |Saved| Set |[Saved| Set [Saved| Set [Saved| Set

BRANCH AND LINK No No No No No No No No AM No AM No

BRANCH AND SAVE No No No No No No No No No No Yes | No
BRANCH AND SAVE AND SET No No No No No No No No No No Yes | Yes!?

MODE

BRANCH AND SET AUTHORITY No No Yes | Yes | Yes | Yes | No No No No Yes | Yes
BRANCH AND SET MODE No No No No No No No No No No Yes!| Yes!?

BRANCH AND STACK Yes | No Yes | No Yes | No Yes | No Yes | No Yes2| No
BRANCH IN SUBSPACE GROUP No No No No No No No No No No Yest| Yes

INSERT PROGRAM MASK No No No No No No No No Yes | No No No

INSERT PSW KEY No No Yes | No No No No No No No No No

INSERT ADDRESS SPACE No No No No No No Yes | No No No No No

CONTROL

Basic PROGRAM CALL No No No No Yes | Yes | No No No No Yes | Yes
Stacking PROGRAM CALL Yes | No Yes | PKC | Yes | Yes | Yes | Yes | Yes | No Yes | Yes
PROGRAM CALL FAST Yes | No Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes
PROGRAM RETURN No Yes3| No Yes | No Yes | No Yes | No Yes#| No Yes
PROGRAM TRANSFER No No No No No Yes5| No No No No No Yes
RESUME PROGRAM No No No No No No No Yes | No Yes | No Yes

SET ADDRESS SPACE CONTROL | No No No No No No No Yes | No No No No

SET PROGRAM MASK No No No No No No No No No Yes | No No

SET PSW KEY FROM ADDRESS No No No Yes | No No No No No No No No

SET SYSTEM MASK No Yes | No No No No No No No No No No

STORE THEN AND SYSTEM MASK| Yes | ANDs| No No No No No No No No No No

STORE THEN OR SYSTEM MASK | Yes | ORs | No No No No No No No No No No

Explanation:

1 The action takes place only if the associated R field in the instruction is nonzero.

2 The action takes place only if the associated R field in the instruction is zero.

3 PROGRAM RETURN does not change the PER mask.

4 The condition code set by PROGRAM RETURN is unpredictable.

5 PROGRAM TRANSFER does not change the problem-state bit from one to zero.

AM The action depends on the addressing mode, bit 32 of the current PSW. In the 24-bit
addressing mode, the condition code and program mask are saved in the lTeftmost byte of
the general register. In the 31-bit addressing mode, the addressing mode and bits 1-7 of
the 31-bit address replace the Teftmost byte of the register.

ANDs The logical AND of the immediate field in the instruction and the current system mask
replaces the current system mask.

ORs The Togical OR of the immediate field in the instruction and the current system mask
replaces the current system mask.

PKC When the PSW-key-control bit, bit 131 of the 32-byte entry-table entry, is zero, the PSW
key remains unchanged. When the PSW-key-control bit is one, the PSW key is set with the
entry key, bits 136-139 of the entry-table entry.

Figure 4-1. Operations on PSW Fields

Programming Note:
tions which save or

A summary of the opera-
set the problem state,

addressing mode, and instruction address is con-

4-4 ESA/390 Principles of Operation

tained in ['Subroutine Linkage without the Linkage]
Stack” on page 5-9

Program-Status-Word Format

I|E Prog
O[R|0 0 O|T|0O|X| Key [1|M|W|P|A S|C C| Mask [0 0O 00000
0 5 8 12 16 18 20 24 31
A Instruction Address
32 63

Figure 4-2. PSW Format

The following is a summary of the functions of the
PSW fields. (See Figure 4-2.)

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with program-
event recording (PER). When the bit is zero, no
PER event can cause an interruption. When the
bit is one, interruptions are permitted, subject to
the PER-event-mask bits in control register 9.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of logical and instruc-
tion addresses used to access storage takes
place. When the bit is zero, DAT is off, and
logical and instruction addresses are treated as
real addresses. When the bit is one, DAT is on,
and the dynamic-address-translation mechanism is
invoked.

I/O Mask (10): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is
zero, an |/O interruption cannot occur. When the
bit is one, /O interruptions are subject to the
I/O-interruption subclass-mask bits in control reg-
ister 6. When an I/O-interruption subclass-mask
bit is =zero, an /O interruption for that
I/O-interruption subclass cannot occur; when the
I/O-interruption subclass-mask bit is one, an /O
interruption for that I/O-interruption subclass can
occur.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is
zero, an external interruption cannot occur. When
the bit is one, an external interruption is subject to
the corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass

cannot cause an interruption; when the subclass-
mask bit is one, an interruption in that subclass
can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. If the reference is
subject to key-controlled protection, the PSW key
is matched with a storage key when information is
stored or when information is fetched from a
location that is protected against fetching.
However, for one of the operands of each of
MOVE TO PRIMARY, MOVE TO SECONDARY,
MOVE WITH KEY, MOVE WITH SOURCE KEY,
and MOVE WITH DESTINATION KEY, an access
key specified as an operand is used instead of the
PSW key.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing
damage are permitted, but interruptions due to
other machine-check-subclass conditions are
subject to the subclass-mask bits in control reg-
ister 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that provide
meaningful information to the problem program
and that cannot affect system integrity; such
instructions are called unprivileged instructions.
The instructions that are never valid in the
problem state are called privileged instructions.
When a CPU in the problem state attempts to
execute a privileged instruction, a privileged-
operation exception is recognized. Another group
of instructions, called semiprivileged instructions,
are executed by a CPU in the problem state only
if specific authority tests are met; otherwise, a
privileged-operation exception or a special-
operation exception is recognized.

Chapter 4. Control 4-5

Address-Space Control (AS): Bits 16 and 17, in
conjunction with PSW bit 5, control the translation
mode. See [Translation Modes” on page 3-28

Condition Code (CC): Bits 18 and 19 are the
two bits of the condition code. The condition code
is set to 0, 1, 2, or 3, depending on the result
obtained in executing certain instructions. Most
arithmetic and logical operations, as well as some
other operations, set the condition code. The
instruction BRANCH ON CONDITION can specify
any selection of the condition-code values as a
criterion for branching. A table in Appendix C
summarizes the condition-code values that may
be set for all instructions which set the condition
code of the PSW.

Program Mask: Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program-

Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 HFP exponent underflow
23 HFP significance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The setting of the HFP-
exponent-underflow-mask bit or the
HFP-significance-mask bit also determines the
manner in which the operation is completed when
the corresponding exception occurs.

Addressing Mode (A): Bit 32 controls the size of
effective addresses and effective-address gener-
ation. When the bit is zero, 24-bit addressing is
specified. When the bit is one, 31-bit addressing
is specified. The addressing mode does not
control the size of PER addresses or of addresses
used to access DAT, ASN, dispatchable-unit-
control, linkage, entry, and trace tables or access
lists or the linkage stack. See
Generation” on _page 5-7 and [{Address Size and|

\Wraparound” on page 3-5}

Instruction Address: Bits 33-63 form the
instruction address. This address designates the
location of the leftmost byte of the next instruction
to be executed, unless the CPU is in the wait
state (bit 14 of the PSW is one).

4-6 ESA/390 Principles of Operation

Bit positions 0, 2-4, and 24-31 are unassigned and
must contain zeros. A specification exception is
recognized when these bit positions do not contain
zeros. When bit 32 of the PSW specifies the
24-bit addressing mode, bits 33-39 of the instruc-
tion address must be zeros; otherwise, a specifi-
cation exception is recognized. A specification
exception is also recognized when bit position 12
does not contain a one.

Control Registers

The control registers provide for maintaining and
manipulating control information outside the PSW.
There are sixteen 32-bit control registers.

All control-register bit positions in all 16 control
registers are installed, regardless of whether the
bit position is assigned to a facility. One or more
specific bit positions in control registers are
assigned to each facility requiring such register
space.

The LOAD CONTROL instruction causes all
control-register bit positions within those registers
designated by the instruction to be loaded from
storage. The instructions BRANCH AND SET
AUTHORITY, BRANCH IN SUBSPACE GROUP,
LOAD ADDRESS SPACE PARAMETERS, SET
SECONDARY ASN, BRANCH AND STACK,
PROGRAM CALL, PROGRAM CALL FAST,
PROGRAM RETURN, and PROGRAM
TRANSFER provide specialized functions to place
information into certain control-register bit posi-
tions.

Information loaded into the control registers
becomes active (that is, assumes control over the
system) at the completion of the instruction that
causes the information to be loaded.

At the time the registers are loaded, the informa-
tion is not checked for exceptions, such as invalid
translation-format code or an address designating
an unavailable or protected location. The validity
of the information is checked and the exceptions,
if any, are indicated at the time the information is
used.

The STORE CONTROL instruction causes the
contents of all control-register bit positions, within
those registers designated by the instruction, to be
placed in storage. The instructions EXTRACT
PRIMARY ASN, EXTRACT SECONDARY ASN,

and PROGRAM CALL provide specialized func-
tions to obtain information from certain control-
register bit positions.

Only the general structure of the control registers
is described here; the definition of a particular
control-register bit position appears in the
description of the facility with which the position is
associated. |Figure 4-3 on page 4-8 shows the
control-register bit positions which are assigned
and the initial values of the positions upon exe-
cution of initial CPU reset. All control-register bit

positions not listed in the figure are initialized to
zero.

Programming Notes:

1. The detailed definition of a particular control-
register bit position can be located by referring
to the entry “control-register assignment” in
the Index.

2. To ensure that existing programs operate cor-
rectly if and when new facilities using addi-
tional control-register positions are installed,
the program should load zeros in unassigned
control-register positions.

Chapter 4. Control 4-7

origin4

Ctrl Initial
Reg |[Bits Name of Field Associated with Value
0 1 |SSM-suppression control SET SYSTEM MASK 0
0 2 |TOD-clock-sync control TOD clock 0
0 3 |Low-address-protection control Low-address protection 0
0 4 |Extraction-authority control Instruction authorization 0
0 5 |Secondary-space control Instruction authorization 0
0 6 |Fetch-protection-override control Key-controlled protection 0
0 7 |Storage-protection-override control|Key-controlled protection 0
0 | 8-12|Translation format Dynamic address translation 0
0 | 13 |AFP-register control Floating point 0
© | 14 |Vector control? Vector operations 0
0 | 15 |Address-space-function control Instruction authorization 0
O | 16 |Malfunction-alert subclass mask External interruptions 0
0 | 17 |Emergency-signal subclass mask External interruptions 0
© | 18 |External-call subclass mask External interruptions 0
0 | 19 |TOD-clock sync-check subclass mask [External interruptions 0
0 | 20 |Clock-comparator subclass mask External interruptions 0
© | 21 |CPU-timer subclass mask External interruptions 0
0 | 22 |Service-signal subclass mask External interruptions 0
0 | 24 |Unused2 1
0 | 25 |Interrupt-key subclass mask External interruptions 1
0 | 26 |Unused2 1
© | 27 |ETR subclass mask External interruptions 0
1 0 |Primary space-switch-event control |Program interruptions 0
1 | 1-19|Primary segment-table origin Dynamic address translation 0
1 | 22 |Primary subspace-group control Subspace groups 0
1 | 23 |Primary private-space control Dynamic address translation 0
1| 24 |Primary storage-alteration-event Program-event rec. 2 only 0

control
1 |25-31|Primary segment-table length Dynamic address translation 0
2 | 1-25|Dispatchable-unit-control-table Access-register translation 0
origin
3 | 0-15|PSW-key mask Instruction authorization 0
3 |16-31|Secondary ASN Address spaces 0
4 | 0-15|Authorization index Instruction authorization 0
4 |16-31|Primary ASN Address spaces 0
5 0 |Subsystem-linkage control3 Instruction authorization 0
5 | 1-24|Linkage-table origin3 PC-number translation 0
5 |25-31|Linkage-table length3 PC-number translation 0
5 | 1-25|Primary-ASN-second-table-entry Access-register translation 0

Figure 4-3 (Part 1 of 3). Assignment of Control-Register Fields

4-8

ESA/390 Principles of Operation

Ctrl Initial
Reg |[Bits Name of Field Associated with Value
6 | 0-7 |I/0-interruption subclass mask I/0 interruptions 0
7 | 1-19|Secondary segment-table origin Dynamic address translation 0
7 | 22 |Secondary subspace-group control Subspace groups 0
7 | 23 |Secondary private-space control Dynamic address translation 0
7 | 24 |Secondary storage-alteration-event |Program-event rec. 2 only 0

control
7 |25-31|Secondary segment-table Tength Dynamic address translation 0
8 | 0-15|Extended authorization index Access-register translation 0
8 |16-31|Monitor masks MONITOR CALL 0
9 0 |Successful-branching-event mask Program-event recording 0
9 1 |Instruction-fetching-event mask Program-event recording 0
9 2 |Storage-alteration-event mask Program-event recording 0
9 3 |GR-alteration-event mask Program-event rec. 1 only 0
9 4 |Store-using-real-address-event mask|Program-event recording 0
9 8 |Branch-address control Program-event rec. 2 only 0
9 | 10 |Storage-alteration-space control Program-event rec. 2 only 0
9 [16-31|PER general-register masks Program-event rec. 1 only 0
10 | 1-31|PER starting address Program-event recording 0
11 | 1-31|PER ending address Program-event recording 0
12 0 |Branch-trace control Tracing 0
12 | 1-29|Trace-entry address Tracing 0
12 | 30 |ASN-trace control Tracing 0
12 | 31 |Explicit-trace control Tracing 0
13 0 |Home space-switch-event control Program interruptions 0
13 | 1-19|Home segment-table origin Dynamic address translation 0
13 | 22 |[Ignored 0
13 | 23 |[Home private-space control Dynamic address translation 0
13 | 24 |Home storage-alteration-event Program-event rec. 2 only 0

control
13 |25-31|Home segment-table Tength Dynamic address translation 0
14 0 |Unused? 1
14 1 |Unused? 1
14 2 |Extended-save-area control Floating point 0
14 3 [Channel-report-pending subclass I/0 machine-check handling 0

mask
14 4 |Recovery subclass mask Machine-check handling 0
14 5 |Degradation subclass mask Machine-check handling 0
14 6 |External-damage subclass mask Machine-check handling 1
14 7 |Warning subclass mask Machine-check handling 0
14 | 106 |TOD-clock-control-override control |TOD clock 0
14 | 12 |ASN-translation control Instruction authorization 0
14 |13-31[ASN-first-table origin ASN translation 0
15 | 1-28|Linkage-stack-entry address Linkage-stack operations 0

Figure 4-3 (Part 2 of 3). Assignment of Control-Register Fields

Chapter 4. Control

4-9

Explanation:

The fields not listed are unassigned.
control-register positions is zero.

SA22-7207.

System/370 definition.

The initial value for all unlisted

1 Bit 14 of control register 0, the vector-control bit, is described in the
publication IBM Enterprise Systems Architecture/390 Vector Operations,

2 This bit is not used but is initialized to one for consistency with the

3 When the address-space-function control in control register 0 is zero,
LOAD ADDRESS SPACE PARAMETERS, PROGRAM CALL, and PROGRAM TRANSFER treat
control register 5 as containing the linkage-table designation (LTD)
(subsystem-Tinkage control, linkage-table origin, and linkage-table length).

4 When the address-space-function control is one, control register 5 is
treated as containing the primary-ASN-second-table-entry (PASTE) origin,
and PROGRAM CALL and PROGRAM TRANSFER obtain the LTD from the PASTE.

Figure 4-3 (Part 3 of 3). Assignment of Control-Register Fields

Tracing

Tracing assists in the determination of system
problems by providing an ongoing record in
storage of significant events. Tracing consists of
three separately controllable functions which
cause entries to be made in a trace table: branch
tracing, ASN tracing, and explicit tracing. Branch
tracing and ASN tracing together are referred to
as implicit tracing.

When branch tracing is on, an entry is made in
the trace table for each execution of certain
branch instructions when they cause branching.
The branch address is placed in the trace entry.
The trace entry also indicates the addressing
mode in effect after branching. The branch
instructions that are traced are:

¢ BRANCH AND LINK (BALR only) when the
Rz field is not zero

¢ BRANCH AND SAVE (BASR only) when the
Rz field is not zero

¢ BRANCH AND SAVE AND SET MODE when
the Rz field is not zero

¢ BRANCH AND SET AUTHORITY

¢ BRANCH AND STACK when the Rz field is
not zero

¢ BRANCH IN SUBSPACE GROUP

¢ RESUME PROGRAM

e TRAP

4-10 ESA/390 Principles of Operation

However, a branch trace entry is made for
BRANCH IN SUBSPACE GROUP only if ASN
tracing is not on.

When ASN tracing is on, an entry is made in the
trace table for each execution of the following
instructions:

* BRANCH IN SUBSPACE GROUP
PROGRAM CALL

PROGRAM RETURN

PROGRAM TRANSFER

SET SECONDARY ASN

However, the entry for PROGRAM RETURN is
made only when PROGRAM RETURN unstacks a
linkage-stack state entry that was formed by
PROGRAM CALL or PROGRAM CALL FAST, not
when PROGRAM RETURN unstacks an entry
formed by BRANCH AND STACK.

When explicit tracing is on, execution of TRACE
causes an entry to be made in the trace table.
This entry includes bits 16-63 from the TOD clock,
the second operand of the TRACE instruction, and
the contents of a range of general registers.

Control-Register Allocation

The information to control tracing is contained in
control register 12 and has the following format:

B Trace-Entry Address AlE

01 30 31

Branch-Trace-Control Bit (B): Bit 0 of control
register 12 controls whether branch tracing is
turned on or off. If the bit is zero, branch tracing
is off; if the bit is one, branch tracing is on.

Trace-Entry Address: Bits 1-29 of control reg-
ister 12, with two zero bits appended on the right,
form the real address of the next trace entry to be
made.

ASN-Trace-Control Bit (A): Bit 30 of control reg-
ister 12 controls whether ASN tracing is turned on
or off. If the bit is zero, ASN tracing is off; if the
bit is one, ASN tracing is on.

Explicit-Trace-Control Bit (E): Bit 31 of control
register 12 controls whether explicit tracing is
turned on or off. If the bit is zero, explicit tracing
is off, which causes the TRACE instruction to be
executed as a no-operation; if the bit is one, the
execution of the TRACE instruction creates an
entry in the trace table, except that no entry is
made when bit 0 of the second operand of the
TRACE instruction is one.

Trace Entries

Trace entries are of eight types, as shown in
[Figure 4-4 on page 4-12|

Chapter 4. Control 4-11

31-Bit Branch

1 Branch Address
0 1 31
24-Bit Branch

00000000 Branch Address
0 8 31

BRANCH IN SUBSPACE GROUP (if ASN Tracing On)

01000001 |P Bits 9-31 of ALET A Branch Address
0 8 32 63
SET SECONDARY ASN
00010000|00000000 New SASN
0 8 16 31
PROGRAM CALL
PSW
00100001 |Key PC Number A Return Address P
0 8 12 32 63
PROGRAM RETURN
PSW
00110010 (Key [0000 New PASN A Return Address p
0 8 12 16 32 63
A| Updated Instruction Address
64 95
PROGRAM TRANSFER
PSW
00110001 |Key |0000 New PASN Rz Before
0 8 12 16 32 63
Figure 4-4 (Part 1 of 2). Trace-Entry Formats
TRACE
0111| N |00000000 TOD-Clock Bits 16-63
0 4 8 16 63
/
TRACE Operand (R1) - (R3)
64 96 ! 95 + 32(N+1)

Figure 4-4 (Part 2 of 2). Trace-Entry Formats

4-12 ESA/390 Principles of Operation

Branch Address: The branch address is the
address of the next instruction to be executed
when the branch is taken. In a branch trace entry
when the 31-bit addressing mode is in effect after
branching, bit positions 1-31 of the trace entry
contain the branch address. When the 24-bit
addressing mode is in effect after branching, bit
positions 8-31 contain the branch address. In a
trace entry made on execution of BRANCH IN
SUBSPACE GROUP when ASN tracing is on, bit
positions 33-63 of the trace entry contain the
branch address.

Primary-List Bit (P) and Bits 9-31 of ALET: Bit
position 8 of the trace entry made on execution of
BRANCH IN SUBSPACE GROUP when ASN
tracing is on contains bit 7 of the access-list-entry
token (ALET) in the access register designated by
the Rz field of the instruction. Bit positions 9-31 of
the trace entry contain bits 9-31 of the ALET.

New SASN: Bit positions 16-31 of the trace entry
for SET SECONDARY ASN contain the ASN
value loaded into control register 3 by the instruc-
tion.

PSW Key: Bit positions 8-11 of the trace entries
made on execution of PROGRAM CALL,
PROGRAM RETURN, and PROGRAM
TRANSFER contain the PSW key from the current
PSW.

PC Number: Bit positions 12-31 of the trace
entry made on execution of PROGRAM CALL
contain the value of the rightmost 20 bits of the
second-operand address.

Addressing-Mode Bit (A): Bit position 32 of the
trace entry made on execution of PROGRAM
CALL contains the addressing-mode bit from the
current PSW. Bit position 32 of the trace entry
made on execution of PROGRAM RETURN con-
tains the addressing-mode bit that replaces bit 32
of the PSW, and bit position 64 of the trace entry
contains bit 32 from the PSW before bit 32 is
replaced. Bit position 32 of the trace entry made
on execution of BRANCH IN SUBSPACE GROUP
when ASN tracing is on contains the addressing-
mode bit that replaces bit 32 of the PSW.

Return Address: Bit positions 33-62 of the trace
entry made on execution of PROGRAM CALL
contain bits 1-30 of the updated instruction
address in the PSW before that address is

replaced from the entry-table entry. Bit positions
33-62 of the trace entry made on execution of
PROGRAM RETURN contain bits 1-30 of the
instruction address that replaces bits 33-63 of the
PSW.

Problem-State Bit (P): Bit position 63 of the
trace entry made on execution of PROGRAM
CALL contains the problem-state bit from the
current PSW. Bit position 63 of the trace entry
made on execution of PROGRAM RETURN con-
tains the problem-state bit that replaces bit 15 of
the PSW.

New PASN: Bit positions 16-31 of the trace entry
made on execution of PROGRAM RETURN
contain the new PASN that is restored from the
linkage-stack state entry. Bit positions 16-31 of
the trace entry made on execution of PROGRAM
TRANSFER contain the new PASN (which may be
zero) specified in bit positions 16-31 of general
register R1.

Updated Instruction Address: Bit positions
65-95 of the trace entry made on execution of
PROGRAM RETURN contain bits 1-31 of the
updated instruction address in the PSW before
that address is replaced from the linkage-stack
state entry.

R2 Before: Bit positions 32-63 of the trace entry
made on execution of PROGRAM TRANSFER
contain the contents of the general register desig-
nated by the Rz field of the instruction. Bits 0-30
of the general register designated by the Rz field
replace bits 32-62 of the PSW. Bit 31 of the same
general register replaces the problem-state bit of
the PSW.

Number of Registers (N): Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have
been provided in the trace entry. The value of N
ranges from zero, meaning the contents of one
general register are provided in the trace entry, to
15, meaning the contents of all 16 general regis-
ters are provided.

TOD-Clock Bits 16-63: Bits 16-63 of the trace
entry for TRACE are obtained from bit positions
16-63 of the TOD clock, as would be provided by
a STORE CLOCK instruction executed at the time
the TRACE instruction was executed.

Chapter 4. Control 4-13

TRACE Operand: Bits 64-95 of the trace entry
for TRACE contain a copy of the 32 bits of the
second operand of the TRACE instruction for
which the entry is made.

(R1) - (R3): The four-byte fields starting with bit
96 of the trace entry for TRACE contain the con-
tents of the general registers whose range is
specified by the R1 and Rs fields of the TRACE
instruction. The general registers are stored in
ascending order of register numbers, starting with
general register Ri1 and continuing up to and
including general register R3, with general register
0 following general register 15.

Programming Note: The size of the trace entry
for TRACE in units of words is 3 + (N + 1). The
maximum size of an entry is 19 words, or 76
bytes.

Operation

When an instruction which is subject to tracing is
executed and the corresponding tracing function is
turned on, a trace entry of the appropriate format
is made. The real address of the trace entry is
formed by appending two zero bits on the right to
the value in bit positions 1-29 of control register
12. The address in control register 12 is subse-
guently increased by the size of the entry created.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry
to be propagated into bit position 19 (that is, the
trace-entry address would be in the next 4K-byte
block). If this would be the case for the entry to
be made, a trace-table exception is recognized.
For the purpose of recognizing the trace-table
exception in the case of a TRACE instruction, the
maximum length of 76 bytes is used instead of the
actual length.

The storing of a trace entry is not subject to key-
controlled protection (nor, since the trace-entry
address is real, is it subject to access-list-
controlled protection or page protection), but it is
subject to low-address protection; that is, if the
address of the trace entry due to be created is in
the range 0-511 and bit 3 of control register 0 is
one, a protection exception is recognized, and
instruction execution is suppressed. If the
address of a trace entry is invalid, an addressing
exception is recognized, and instruction execution
is suppressed.

4-14 ESA/390 Principles of Operation

The three exceptions associated with storing a
trace entry (addressing, protection, and trace
table) are collectively referred to as trace
exceptions.

If a program interruption takes place for a condi-
tion which is not a trace-exception condition and
for which execution of an instruction is not com-
pleted, it is unpredictable whether part or all of
any trace entry due to be made for such an inter-
rupted instruction is stored in the trace table.
Thus, for a condition which would ordinarily cause
nullification or suppression of instruction exe-
cution, storage locations may have been altered
beginning at the location designated by control
register 12 and extending up to the length of the
entry that would have been created.

When PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by BRANCH
AND STACK and ASN tracing is on, trace
exceptions may be recognized, even though a
trace entry is not made and no part of a trace
entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed
by other CPUs and by channel programs, the con-
tents of a byte of a trace entry may appear to
change more than once before completion of the
instruction for which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Program-Event Recording

There are two versions of the program-event-
recording (PER) facility. The version which is the
same as PER in ESA/370 is named PER 1, and
the other version is named PER 2. A model pro-
vides either PER 1 or PER 2.

Unless otherwise noted, the descriptions in this
section apply to both PER 1 and PER 2. The dif-
ferences between PER 1 and PER 2 are pointed
out in the section.

The purpose of PER (PER 1 or PER 2) is to
assist in debugging programs. It permits the
program to be alerted to the following types of
events:

e Execution of a successful branch instruction.
PER 2 provides the option of having an event
occur only when the branch-target location is
within the designated storage area.

¢ Fetching of an instruction from the designated
storage area.

¢ Alteration of the contents of the designated
storage area. PER 2 provides the option of
having an event occur only when the storage
area is within designated address spaces.

e Alteration of the contents of designated
general registers. This type of event can
occur only with PER 1, not with PER 2.

e Execution of the STORE USING REAL
ADDRESS instruction.

The program can selectively specify that one or
more of the above types of events be recognized,
except that the event for STORE USING REAL
ADDRESS can be specified only along with the
storage-alteration event. The information con-
cerning a PER event is provided to the program
by means of a program interruption, with the
cause of the interruption being identified in the
interruption code.

If a model implements ESA/390 with PER 2 and
also System/370, general-register-alteration events
may be omitted in System/370, depending on the
model.

Control-Register Allocation and
Segment-Table Designation

The information for controlling PER resides in
control registers 9, 10, and 11 and the segment-
table designation. The information in the control
registers has the following format:

PER-1 Control Register 9

EM Gen.-Reg. Masks

0 5 16 31

PER-2 Control Register 9

EM Bl |S

0 5 8 10 31

Control Register 10

Starting Address

Control Register 11

Ending Address

01 31

PER-Event Masks (EM): With PER 1, bits 0-4 of
control register 9 specify which types of events
are recognized. With PER 2, bits 0-2 and 4
provide this specification. The bits are assigned
as follows:

Bit 0: Successful-branching event

Bit 1: Instruction-fetching event

Bit 2: Storage-alteration event

Bit 3: General-register-alteration event (PER 1
only)

Bit 4: Store-using-real-address event (bit 2 must
be one also)

Bits 0-4, when ones, specify that the corre-
sponding types of events be recognized.
However, bit 4 is effective for this purpose only
when bit 2 is also one. When bit 2 is one, the
storage-alteration event is recognized. When bits
2 and 4 are ones, both the storage-alteration
event and the store-using-real-address event are
recognized. When a bit is zero, the corresponding
type of event is not recognized. When bit 2 is
zero, both the storage-alteration event and the
store-using-real-address event are not recognized.
With PER 2, no type of event corresponds to bit
3, and bit 3 is ignored.

Branch-Address Control (B): With PER 2, bit 8
of control register 9 specifies, when one, that
successful-branching events occur only for
branches that are to a location within the desig-
nated storage area. With PER 1, or with PER 2
when bit 8 is zero, successful-branching events
occur regardless of the branch-target address. Bit
8 is ignored by PER 1.

Storage-Alteration-Space Control (S): With
PER 2, bit 10 of control register 9 specifies, when
one, that storage-alteration events occur as a
result of references to the designated storage area
only within designated address spaces. An
address space is designated as one for which

Chapter 4. Control 4-15

storage-alteration events occur by means of the
storage-alteration-event bit in the segment-table
designation that is used to translate references to
the address space. Bit 10 is ignored when DAT is
off. With PER 1, or with PER 2 when DAT is off
or bit 10 is zero, storage-alteration events are not
restricted to occurring for only particular address
spaces. Bit 10 is ignored by PER 1.

PER General-Register Masks: With PER 1, bits
16-31 of control register 9 specify which general
registers are designated for recognition of the
alteration of their contents. The 16 bits, in the
sequence of ascending bit numbers, correspond
one for one with the 16 registers, in the sequence
of ascending register numbers. When a bit is one,
the alteration of the associated register is recog-
nized; when it is zero, the alteration of the register
is not recognized. With PER 2, general-register-
alteration events do not occur, and bits 16-31 are
ignored.

PER Starting Address: Bits 1-31 of control reg-
ister 10 are the address of the beginning of the
designated storage area.

PER Ending Address: Bits 1-31 of control reg-
ister 11 are the address of the end of the desig-
nated storage area.

The segment-table designation has the following
format:

Segment-Table Designation

Segment-Table Origin P[S| STL

01 20 23 25 31

Storage-Alteration-Event Bit (S): With PER 2,
when the storage-alteration-space control in
control register 9 is one, bit 24 of the segment-
table designation specifies, when one, that the
address space defined by the segment-table des-
ignation is one for which storage-alteration events
can occur. Bit 24 is examined when the segment-
table designation is used to perform dynamic-
address translation for a storage-operand store
reference. The segment-table designation may be
the PSTD, SSTD, or HSTD in control register 1, 7,
or 13, respectively, or it may be obtained from an
ASN-second-table entry during access-register
translation. Instead of being obtained from an

4-16 ESA/390 Principles of Operation

ASN-second-table entry in main storage, bit 24
may be obtained from an ASN-second-table entry
in the ART-lookaside buffer (ALB). Bit 24 is
ignored when the storage-alteration-space control
is zero, and it is always ignored by PER 1.

Programming Notes:

1. Models may operate at reduced performance
while the CPU is enabled for PER events. In
order to ensure that CPU performance is not
degraded because of the operation of the
PER facility, programs that do not use it
should disable the CPU for PER events by
setting either the PER mask in the PSW to
zero or the PER-event masks in control reg-
ister 9 to zero, or both. No degradation due
to PER occurs when either of these fields is
zero.

2. Some degradation may be experienced on
some models every time control registers 9,
10, and 11 are loaded, even when the CPU is
disabled for PER events (see the program-
ming note under ['Storage-Area Designation”).

Operation

PER is under control of bit 1 of the PSW, the PER
mask. When the PER mask, a particular
PER-event mask bit, and, for general-register-
alteration events (PER 1 only), a particular
general-register mask bit are all ones, the CPU is
enabled for the corresponding type of event; oth-
erwise, it is disabled. However, the CPU is
enabled for the store-using-real-address event
only when the storage-alteration mask bit and the
store-using-real-address mask bit are both ones.

An interruption due to a PER event normally
occurs after the execution of the instruction
responsible for the event. The occurrence of the
event does not affect the execution of the instruc-
tion, which may be either completed, partially
completed, terminated, suppressed, or nullified.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the PER
mask in the PSW or by the masks in control reg-
ister 9, the event is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and
11 affects PER starting with the execution of the
immediately following instruction.

A change to the storage-alteration-event bit in a
segment-table designation in control register 1, 7,
or 13 also affects PER starting with the execution
of the immediately following instruction. A change
to the storage-alteration-event bit in a segment-
table designation that may be obtained, during
access-register translation, from an
ASN-second-table entry in either main storage or
the ALB does not necessarily have an immediate,
if any, effect on PER. However, PER is affected
immediately after PURGE ALB is executed.

If a PER event occurs during the execution of an
instruction which changes the CPU from being
enabled to being disabled for that type of event,
that PER event is recognized.

PER events may be recognized in a trial execution
of an instruction, and subsequently the instruction,
DAT-table entries, and operands may be refetched
for the actual execution. If any refetched field was
modified by another CPU or by a channel program
between the trial execution and the actual exe-
cution, it is unpredictable whether the PER events
indicated are for the trial or the actual execution.

For special-purpose instructions that are not
described in this publication, the operation of PER
may not be exactly as described in this section.

Identification of Cause

A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in real storage locations 150-155, and
in location 161 if the PER event is a storage-
alteration event. Additional information is provided
by means of the instruction address in the
program old PSW and the ILC. The information
stored in real locations 150-155 and 161 has the
following format:

PER-1 Locations 150-151:

PERC|{000000000000

0 4 15

PER-2 Locations 150-151:

PERC [0000|ATMID|SI

0 5 9 1315

Locations 152-155:

0 PER Address

0 1 31

Location 161:

0000 | PAID

0 4 7

PER Code (PERC): With PER 1, the occur-
rence of PER events is indicated by ones in bit
positions 0-3 of real location 150, the PER code.
With PER 2, the PER code is bits 0-2 and 4. The
bit position in the PER code for a particular type of
event is the same as the bit position for that event
in the PER-event-mask field in control register 9,
except as follows:

e With PER 1, when bits 2 and 4 in control reg-
ister 9 are both ones, a one in bit position 2 of
location 150 indicates the occurrence of either
a storage-alteration event or a store-using-
real-address event.

¢ With PER 2, a one in bit position 2 and a zero
in bit position 4 of location 150 indicate a
storage-alteration event, while ones in bit posi-
tions 2 and 4 indicate a store-using-real-
address event.

When a program interruption occurs, more than
one type of PER event can be concurrently indi-
cated. Additionally, if another program-interruption
condition exists, the interruption code for the
program interruption may indicate both the PER
events and the other condition.

Addressing-and-Translation-Mode Identifica-

tion (ATMID): With PER 2, during a program
interruption when a PER event is indicated, bits
32, 5, 16, and 17 of the PSW at the beginning of
the execution of the instruction that caused the
event may be stored in bit positions 10-13,
respectively, of real locations 150-151. If bits 32,
5, 16, and 17 are stored, then a one bit is stored
in bit position 9 of locations 150-151. If bits 32, 5,
16, and 17 are not stored, then zero bits are
stored in bit positions 9-13 of locations 150-151.

Bits 9-13 of real locations 150-151 are named the

addressing-and-translation-mode identification
(ATMID). Bit 9 is named the ATMID-validity bit.

Chapter 4. Control 4-17

When bit 9 is zero, it indicates that an invalid
ATMID (all zeros) was stored.

The meanings of the bits of a valid ATMID are as
follows:

Bit Meaning

9 ATMID-validity bit
10 PSW bit 32

11 PSWhit5

12 PSW bit 16

13 PSW bit 17

A valid ATMID is necessarily stored only if the
PER event was caused by one of the following
instructions:

« BRANCH AND SAVE AND SET MODE
(BASSM)

¢ BRANCH AND SET AUTHORITY (BSA)

« BRANCH AND SET MODE (BSM)

« BRANCH IN SUBSPACE GROUP (BSG)

« LOAD PSW (LPSW)

¢ PROGRAM CALL (PC)

« PROGRAM CALL FAST (PCF)

« PROGRAM RETURN (PR)

¢ PROGRAM TRANSFER (PT)

¢ RESUME PROGRAM (RP)

« SET ADDRESS SPACE CONTROL (SAC)

« SET ADDRESS SPACE CONTROL FAST
(SACF)

¢ SET SYSTEM MASK (SSM)

e« STORE THEN AND SYSTEM MASK
(STNSM)

« STORE THEN OR SYSTEM MASK (STOSM)

¢ SUPERVISOR CALL (SVC)

« TRAP (TRAP2, TRAP4)

It is unpredictable whether a valid ATMID is stored
if the PER event was caused by any other instruc-
tion.

In the case of an instruction-fetching PER event
caused by SET ADDRESS SPACE CONTROL or
SET ADDRESS SPACE CONTROL FAST, bits 12
and 13 of the ATMID, which correspond to bits 16
and 17 of the PSW, may indicate that the CPU
was in the primary-space mode when it actually
was in the primary-space, secondary-space, or
access-register mode. In any of those modes, the
instruction fetch is from the primary address
space.

PER STD ldentification (Sl): With PER 2, if a
storage-alteration event is indicated in the PER
code (bit 2 is one and bit 4 is zero) and this event

4-18 ESA/390 Principles of Operation

occurred when DAT was on, bits 14 and 15 of
locations 150-151 are set to identify the segment-
table designation (STD) that was used to translate
the reference that caused the event, as follows:

Bits

14-15 Meaning

00 Primary STD was used.

01 An AR-specified STD was used. The PER
access id, real location 161, can be exam-
ined to determine the STD wused.
However, if the primary, secondary, or
home STD was used, bits 14 and 15 may
be set to 00, 10, or 11, respectively,
instead of to 01.

10 Secondary STD was used.

11 Home STD was used.

The CPU may avoid setting bits 14 and 15 to 01
by recognizing that access-list-entry token (ALET)
00000000 or 00000001 hex was used or that the
ALET designated, through an access-list entry, an
ASN-second-table entry containing an STD equal
to the primary STD, secondary STD, or home
STD.

If a storage-alteration event is not indicated in the
PER code (bit 2 is zero or bit 4 is one) or DAT
was off, zeros are stored in bit positions 14 and
15.

With PER 1, zeros are stored in bit positions 4-15
of locations 150-151. With PER 2, zeros are
stored in bit positions 3 and 5-8 of locations
150-151.

PER Address: The PER-address field at
locations 152-155 contains the instruction address
used to fetch the instruction in execution when
one or more PER events were recognized. When
the instruction is the target of EXECUTE, the
instruction address used to fetch the EXECUTE
instruction is placed in the PER-address field. A
zero is stored in bit position 0 of real location 152.

PER Access Identification (PAID): If a storage-
alteration event is indicated in the PER code, an
indication of the address space to which the event
applies may be stored at location 161. If the
access used an AR-specified segment-table desig-
nation, the number of the access register used is
stored in bit positions 4-7 of location 161, and
zeros are stored in bit positions 0-3. However,
with PER 1 only, the contents of location 161 are
unpredictable if the instruction that caused the

event turned DAT off. With PER 1 or PER 2, the
contents of location 161 are also unpredictable if
(1) the CPU was in the access-register mode but
the access was an implicit reference to the linkage
stack, (2) the CPU was not in the access-register
mode, or (3) a store-using-real-address event
instead of a storage-alteration event occurred. If
bit 2 of the PER code is zero, location 161
remains unchanged.

Instruction Address: The instruction address in
the program old PSW is the address of the
instruction which would have been executed next,
unless another program condition is also indi-
cated, in which case the instruction address is that
determined by the instruction ending due to that
condition.

ILC: The ILC indicates the length of the instruc-
tion designated by the PER address, except when
a concurrent specification exception for the PSW
introduced by LOAD PSW, PROGRAM RETURN,
or a supervisor-call interruption sets an ILC of 0.

Programming Notes:

1. PSW bit 32 is the addressing-mode bit (24-bit
mode if the bit is zero, or 31-bit mode if the bit
is one), PSW bit 5 is the DAT-mode bit, and
PSW bits 16 and 17 are the address-space-
control bits. For the handling of instruction
and logical addresses in the different trans-
lation modes, see [Translation Modes” on|
pag 8 The following notes apply to
PER 2.

2. A valid ATMID allows the program handling
the PER event to determine the address
space from which the instruction that caused
the event was fetched and also to determine
which translation mode applied to the storage-
operand references of the instruction, if any.
Each of the instructions for which a valid
ATMID is necessarily stored can change one
or more of PSW bits 5, 16, and 17, with the
result that the values of those bits in the
program old PSW that is stored because of
the PER event are not necessarily the values
that existed at the beginning of the execution
of the instruction that caused the event. The
instructions for which a valid ATMID is neces-
sarily stored are the only instructions that can
change any of PSW bits 5, 16, and 17.

3. If a storage-alteration PER event is indicated
and DAT was on when the event occurred, an

indication of the segment-table designation
that was used to translate the reference that
caused the event is given by the PER STD
identification, bits 14 and 15 of real locations
150-151. |If bits 14 and 15 indicate that an
AR-specified segment-table designation was
used, the PER access identification in real
location 161 can be used to determine the
address space that was referenced. To deter-
mine if DAT was on, the program handling the
PER event should first examine the
ATMID-validity bit to determine whether a
valid ATMID was stored and, if it was stored,
then examine the DAT-mode bit in the ATMID.
If a valid ATMID was not stored, the program
should examine the DAT-mode bit in the
program old PSW.

. If a valid ATMID is stored, it also allows the

program handling the PER event to determine
the addressing mode (24-bit or 31-bit) that
existed for the instruction that caused the PER
event. This knowledge of the addressing
mode allows the program to determine,
without any chance of error, the meaning of
one bits in bit positions 1-7 of the addresses
of the instruction and of the storage operands,
if any, of the instruction and, thus, to deter-
mine accurately the locations of the instruction
and operands. Note that the address of the
instruction is not necessarily provided without
error by the PER address in real locations
152-155 because that address may be the
address of an EXECUTE instruction, with the
address of the target instruction still to be
determined from the fields that specify the
second-operand address of the EXECUTE
instruction. Also note that another possible
source of error is that, in the 24-bit addressing
mode, an instruction or operand may wrap
around in storage by beginning just below the
16M-byte boundary.

. A valid ATMID is necessarily stored for all

instructions that can change the addressing-
mode bit. However, the ATMID mechanism
does not provide complete assurance that the
instruction causing a PER event and the
instruction's operands can be located accu-
rately because LOAD CONTROL and LOAD
ADDRESS SPACE PARAMETERS can
change the segment-table designation that
was used to fetch the instruction.

Chapter 4. Control 4-19

Priority of Indication

When a program interruption occurs and more
than one PER event has been recognized, all
recognized PER events are concurrently indicated
in the PER code. Additionally, if another program-
interruption condition concurrently exists, the inter-
ruption code for the program interruption indicates
both the PER condition and the other condition.

In the case of an instruction-fetching event for
SUPERVISOR CALL, the program interruption
occurs immediately after the supervisor-call inter-
ruption.

If a PER event is recognized during the execution
of an instruction which also introduces a new
PSW with the type of PSW-format error which is
recognized early (see |‘Exceptions Associated with|
the PSW” on page 6-9), both the specification
exception and PER are indicated concurrently in
the interruption code of the program interruption.
However, for a PSW-format error of the type
which is recognized late, only PER is indicated in
the interruption code. In both cases, the invalid
PSW is stored as the program old PSW.

Recognition of a PER event does not normally
affect the ending of instruction execution.
However, in the following cases, execution of an
interruptible instruction is not completed normally:

1. When the instruction is due to be interrupted
for an asynchronous condition (I/O, external,
restart, or repressible machine-check condi-
tion), a program interruption for the PER event
occurs first, and the other interruptions occur
subsequently (subject to the mask bits in the
new PSW) in the normal priority order.

2. When the stop function is performed, a
program interruption indicating the PER event
occurs before the CPU enters the stopped
state.

3. When any program exception is recognized,
PER events recognized for that instruction
execution are indicated concurrently.

4. Depending on the model, in certain situations,
recognition of a PER event may appear to
cause the instruction to be interrupted prema-
turely without concurrent indication of a
program exception, without an interruption for
any asynchronous condition, or without the
CPU entering the stopped state.

4-20 ESA/390 Principles of Operation

In cases 1 and 2 above, if the only PER event that
has been recognized is an instruction-fetching
event and another unit of operation of the instruc-
tion remains to be executed, the event may be
discarded, with the result that a program inter-
ruption does not occur. Whether the event is dis-
carded is unpredictable.

Programming Notes:

1. In the following cases, an instruction can both
cause a program interruption for a PER event
and change the value of fields controlling an
interruption for PER events. The original field
values determine whether a program inter-
ruption takes place for the PER event.

a. The instructions LOAD PSW, SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction-fetching
event and disable the CPU for PER inter-
ruptions. Additionally, STORE THEN AND
SYSTEM MASK can cause a storage-
alteration event to be indicated. In all
these cases, the program old PSW asso-
ciated with the program interruption for the
PER event may indicate that the CPU was
disabled for PER events.

b. An instruction-fetching event may be
recognized during execution of a LOAD
CONTROL instruction that changes the
value of the PER-event masks in control
register 9 or the addresses in control reg-
isters 10 and 11 controlling indication of
instruction-fetching events.

c. In the access-register mode, a storage-
alteration event that is permitted by a one
value of the storage-alteration-event bit in
a segment-table designation in an
ASN-second-table entry (designated by an
access-list entry) may be caused by any
store-type instruction that changes the
value of the bit from one to zero.

2. No instruction can both change the values of
general-register-alteration masks (PER 1 only)
and cause a general-register-alteration event
to be recognized.

3. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER
interruption occurs as a result of LOAD PSW,

PROGRAM RETURN, or SUPERVISOR
CALL, the ILC indicates the length of these
instructions or EXECUTE, as appropriate,
unless a concurrent specification exception on
LOAD PSW or PROGRAM RETURN calls for
an ILC of 0.

4. When a PER interruption is caused by
branching, the PER address identifies the
branch instruction (or EXECUTE, as appro-
priate), whereas the old PSW points to the
next instruction to be executed. When the
interruption occurs during the execution of an
interruptible instruction, the PER address and
the instruction address in the old PSW are the
same.

Storage-Area Designation

Two types of PER events.—instruction fetching
and storage alteration.—always involve the desig-
nation of an area in storage. With PER 2,
successful-branching events may involve this des-
ignation. The storage area starts at the location
designated by the starting address in control reg-
ister 10 and extends up to and including the
location designated by the ending address in
control register 11. The area extends to the right
of the starting address.

An instruction-fetching event occurs whenever the
first byte of an instruction or the first byte of the
target of an EXECUTE instruction is fetched from
the designated area. A storage-alteration event
occurs when a store access is made to the desig-
nated area by using an operand address that is
defined to be a logical or a virtual address.
However, with PER 2, when DAT is on and the
storage-alteration-space control in control register
9 is one, a storage-alteration event occurs only
when the storage area is within an address space
for which the storage-alteration-event bit in the
segment-table designation is one. A storage-
alteration event does not occur for a store access
made with an operand address defined to be a
real address. With PER 2, when the branch-
address control in control register 9 is one, a
successful-branching event occurs when the first
byte of the branch-target instruction is within the
designated area.

The set of addresses designated for successful-
branching, instruction-fetching, and storage-
alteration events wraps around at address
2,147,483,647; that is, address 0 is considered to

follow address 2,147,483,647. When the starting
address is less than the ending address, the area
is contiguous. When the starting address is
greater than the ending address, the set of
locations designated includes the area from the
starting address to address 2,147,483,647 and the
area from address 0 to, and including, the ending
address. When the starting address is equal to
the ending address, only that one location is des-
ignated.

Address comparison for successful-branching,
instruction-fetching, and storage-alteration events
is always performed using 31-bit addresses. This
is accomplished in the 24-bit addressing mode by
extending the virtual, logical, or instruction address
on the left with seven zero bits before comparing it
with the starting and ending addresses.

Programming Note: In some models, perform-
ance of address-range checking is assisted by
means of an extension to each page-table entry in
the TLB. In such an implementation, changing the
contents of control registers 10 and 11 when the
successful-branching, instruction-fetching, or
storage-alteration-event mask is one, or setting
any of these PER-event masks to one, may cause
the TLB to be cleared of entries. This degradation
may be experienced even when the CPU is disa-
bled for PER events. Thus, when possible, the
program should avoid loading control registers 9,
10, or 11.

PER Events

Successful Branching

With PER 1, or with PER 2 when the branch-
address control in control register 9 is zero, a
successful-branching event occurs independent of
the branch-target address. With PER 2 when the
branch-address control is one, a successful-
branching event occurs only when the first byte of
the branch-target instruction is fetched from the
storage area designated by control registers 10
and 11.

Subject to the effect of the branch-address control,
a successful-branching event occurs whenever
one of the following instructions causes branching:

« BRANCH AND LINK (BAL, BALR)

+ BRANCH AND SAVE (BAS, BASR)

« BRANCH AND SAVE AND SET MODE
(BASSM)

Chapter 4. Control 4-21

« BRANCH AND SET AUTHORITY (BSA)

« BRANCH AND SET MODE (BSM)

« BRANCH AND STACK (BAKR)

« BRANCH IN SUBSPACE GROUP (BSG)

« BRANCH ON CONDITION (BC, BCR)

« BRANCH ON COUNT (BCT, BCTR)

« BRANCH ON INDEX HIGH (BXH)

« BRANCH ON INDEX LOW OR EQUAL
(BXLE)

« BRANCH RELATIVE AND SAVE (BRAS)

« BRANCH RELATIVE ON CONDITION (BRC)

« BRANCH RELATIVE ON COUNT (BRCT)

« BRANCH RELATIVE ON INDEX HIGH
(BRXH)

« BRANCH RELATIVE ON INDEX LOW OR
EQUAL (BRXLE)

+ RESUME PROGRAM (RP)

« TRAP (TRAP2, TRAP4)

Subject to the effect of the branch-address control,
a successful-branching event also occurs when-
ever one of the following instructions causes
branching:

« PROGRAM CALL (PC)

« PROGRAM CALL FAST (PCF)
« PROGRAM RETURN (PR)

+ PROGRAM TRANSFER (PT)

For PROGRAM CALL, PROGRAM CALL FAST,
PROGRAM RETURN, and PROGRAM
TRANSFER, the branch-target address is consid-
ered to be the new instruction address that is
placed in the PSW by the instruction.

A successful-branching event causes a PER
successful-branching event to be recognized if bit
0 of the PER-event masks is one and the PER
mask in the PSW is one.

A PER successful-branching event is indicated by
setting bit 0 of the PER code to one.

Instruction Fetching

An instruction-fetching event occurs if the first byte
of the instruction is within the storage area desig-
nated by control registers 10 and 11. An
instruction-fetching event also occurs if the first
byte of the target of EXECUTE is within the desig-
nated storage area.

An instruction-fetching event causes a PER
instruction-fetching event to be recognized if bit 1
of the PER-event masks is one and the PER
mask in the PSW is one.

4-22 ESA/390 Principles of Operation

If an instruction-fetching event is the only PER
event recognized for an interruptible instruction
that is to be interrupted because of an asynchro-
nous condition (I/O, external, restart, or
repressible machine-check condition) or the per-
formance of the stop function, and if a unit of
operation of the instruction remains to be exe-
cuted, the instruction-fetching event may be dis-
carded, and whether it is discarded is
unpredictable.

The PER instruction-fetching event is indicated by
setting bit 1 of the PER code to one.

Storage Alteration

A storage-alteration event occurs whenever a
CPU, by using a logical or virtual address, makes
a store access without an access exception to the
storage area designated by control registers 10
and 11. However, with PER 2 when DAT is on
and the storage-alteration-space control in control
register 9 is one, the event occurs only if the
storage-alteration-event bit is one in the segment-
table designation that is used by DAT to translate
the reference to the storage location.

The contents of storage are considered to have
been altered whenever the CPU executes an
instruction that causes all or part of an operand to
be stored within the designated storage area.
Alteration is considered to take place whenever
storing is considered to take place for purposes of
indicating protection exceptions, except that recog-
nition does not occur for the storing of data by a
channel program. (See [‘Recognition of Access|
[Exceptions” on page 6-34]) Storing constitutes
alteration for PER purposes even if the value
stored is the same as the original value.

Implied locations that are referred to by the CPU
in the process of performing an interruption are
not monitored. Such locations include PSW and
interruption-code locations. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly, moni-
toring does not apply to the storing of data by a
channel program. Implied locations in the linkage
stack, which are stored in by instructions that
operate on the linkage stack, are monitored.

The 1/O instructions are considered to alter the
second-operand location only when storing actu-
ally occurs.

When an interruptible vector instruction which per-
forms storing is interrupted, and PER storage
alteration applies to storage locations corre-
sponding to elements due to be changed beyond
the point of interruption, PER storage alteration is
indicated if any such store actually occurred and
may be indicated even if such a store did not
occur. PER storage alteration is reported for such
locations only if no access exception exists at the
time that the instruction is executed.

Storage alteration does not apply to instructions
whose operands are specified to be real
addresses. Thus, storage alteration does not
apply to INVALIDATE PAGE TABLE ENTRY,
RESET REFERENCE BIT EXTENDED, SET
STORAGE KEY EXTENDED, STORE USING
REAL ADDRESS, TEST BLOCK, and TEST
PENDING INTERRUPTION (when the effective
address is zero).

A storage-alteration event causes a PER storage-
alteration event to be recognized if bit 2 of the
PER-event masks is one and the PER mask in the
PSW is one. Bit 4 of the PER-event masks is
ignored when determining whether a PER storage-
alteration event is to be recognized.

With PER 1, a PER storage-alteration event is
indicated by setting bit 2 of the PER code to one.
However, when bit 2 of the PER code and bit 4 of
the PER-event masks are both ones, a store-
using-real-address event, instead of a storage-
alteration event, may have occurred. With PER 2,
a PER storage-alteration event is indicated by
setting bit 2 of the PER code to one and bit 4 of
the PER code to zero.

General-Register Alteration

With PER 1, a general-register-alteration event
occurs whenever the contents of a general reg-
ister are replaced. With PER 2, general-register-
alteration events do not occur. The remainder of
this description applies only to PER 1.

The contents of a general register are considered
to have been altered whenever a new value is
placed in the register. Recognition of the event is
not contingent on the new value being different
from the previous one. The execution of an
RR-format arithmetic, logical, or movement
instruction is considered to fetch the contents of
the register, perform the indicated operation, if

any, and then replace the value in the register. A
register can be designated by an RR, RRE, RS, or
RX instruction or implicitly, such as in TRANS-
LATE AND TEST and EDIT AND MARK.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter
the contents of the four registers specifying the
two operands, including the cases where the
padding byte is used, when both operands have
zero length. However, when condition code 3 is
set for MOVE LONG, the general registers con-
taining the operand lengths may or may not be
considered as having been altered.

The instruction COMPARE UNTIL SUBSTRING
EQUAL is always considered to alter the contents
of the even-numbered registers specifying the two
operands. When the operand length or the sub-
string length is zero, the odd-numbered register
specifying an operand may or may not be consid-
ered as having been altered.

The instruction INSERT CHARACTERS UNDER
MASK is not considered to alter the general reg-
ister when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or general-register
pair, designated by Ri, only when the contents
are actually replaced, that is, when the first and
second operands are not equal.

It is unpredictable whether general-register-
alteration events are indicated for instructions of
the vector facility.

A general-register-alteration event causes a PER
general-register-alteration event to be recognized
if bit 3 of the PER-event masks is one, the PER
mask in the PSW is one, and the corresponding
bit in the PER general-register mask is one.

The PER general-register-alteration event is indi-
cated by setting bit 3 of the PER code to one.

Programming Note: The following are some
examples of general-register alteration:

1. Register-to-register load instructions are con-
sidered to alter the register contents even
when both operand addresses designate the
same register.

Chapter 4. Control 4-23

2. Addition or subtraction of zero and multipli-
cation or division by one are considered to
constitute alteration.

3. Logical and fixed-point shift operations are
considered to alter the register contents even
for shift amounts of zero.

4. The branching instructions BRANCH ON
INDEX HIGH and BRANCH ON INDEX LOW
OR EQUAL are considered to alter the first
operand even when zero is added to its value.

Store Using Real Address

A store-using-real-address event occurs whenever
the STORE USING REAL ADDRESS instruction is
executed.

There is no relationship between the store-using-
real-address event and the designated storage
area.

A store-using-real-address event causes a PER
store-using-real-address event to be recognized if
bits 2 and 4 of the PER-event mask are ones and
the PER mask in the PSW is one.

With PER 1, a PER store-using-real-address
event is indicated by setting bit 2 of the PER code
to one. However, when bit 2 of the PER code is
one, a storage-alteration event, instead of a store-
using-real-address event, may have occurred.
With PER 2, a PER store-using-real-address
event is indicated by setting bits 2 and 4 of the
PER code to one.

Indication of PER Events
Concurrently with Other
Interruption Conditions

The following rules govern the indication of PER
events caused by an instruction that also causes a
program exception, a monitor event, a space-
switch event, or a supervisor-call interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated,
suppressed, or nullified. However, when an
access exception applies to the first, second,
or third halfword of the instruction, it is unpre-
dictable whether the instruction-fetching event

4-24 ESA/390 Principles of Operation

is indicated. Similarly, when an access
exception prohibits access to all or a portion
of the target of EXECUTE, it is unpredictable
whether the instruction-fetching events for
EXECUTE and the target are indicated.

2. When the operation is completed or partially
completed, the event is indicated, regardless
of whether any program exception, space-
switch event, or monitor event is also recog-
nized.

3. Successful branching, storage alteration,
general-register alteration, and store using
real address are not indicated for an operation
or, in case the instruction is interruptible, for a
unit of operation that is suppressed or nulli-
fied.

4. When the execution of the instruction is termi-
nated, general-register or storage alteration is
indicated whenever the event has occurred,
and a model may indicate the event if the
event would have occurred had the execution
of the instruction been completed, even if
altering the contents of the result field is con-
tingent on operand values. For purposes of
this definition, the occurrence of those
exceptions which permit termination
(addressing, protection, and data) is consid-
ered to cause termination, even if no result
area is changed.

5. When LOAD PSW, PROGRAM RETURN,
SET SYSTEM MASK, STORE THEN OR
SYSTEM MASK, or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of
PSW-format error that is recognized imme-
diately after the PSW becomes active, the
interruption code identifies both the PER con-
dition and the specification exception. When
LOAD PSW, PROGRAM RETURN, or
SUPERVISOR CALL introduces a
PSW-format error of the type that is recog-
nized as part of the execution of the following
instruction, the PSW is stored as the old PSW
without the specification exception being
recognized.

The indication of PER events concurrently with
other program-interruption conditions is summa-
rized in [Figure 4-5 on page 4-25|

PER Event
Type
of Instr |Storage| GR
Concurrent Condition Ending|Branch|Fetch |Alter. [Alter.!|STURA
Specification
0dd instruction address S No No No No No
in the PSW
Instruction access N or S| No u No No No
Specification
EXECUTE target address odd| S No U No No -
EXECUTE target access N or S| No U No No -
Other nullifying N No Yes No2 No2 -
Other suppressing S No Yes No2 No2 No
A1l terminating T No Yes Yes3 Yes3 -
A11 completing C Yes Yes Yes Yes -

1

Yes

No

Explanation:

The condition does not apply.

With PER 2, PER general-register-alteration events do not occur
and are not indicated.

Although PER events of this type are not indicated for the cur-
rent unit of operation of an interruptible instruction, PER
events of this type that were recognized on completed units of
operation of the interruptible instruction are indicated.

This event may be indicated, depending on the model, if the
event has not occurred but would have been indicated if execu-
tion had been completed.

The operation or, in the case of the interruptible instructions,
the unit of operation is completed.

The operation or, in the case of the interruptible instructions,
the unit of operation is nullified.

The operation or, in the case of the interruptible instructions,
the unit of operation is suppressed.

The execution of the instruction is terminated.

The PER event is indicated with the other program-interruption
condition if the event has occurred; that is, the contents of
the designated storage location or general register were al-
tered, or an attempt was made to execute an instruction whose
first byte is located in the designated storage area.

The PER event is not indicated.

It is unpredictable whether the PER event is indicated.

Figure 4-5. Indication of PER Events with Other Concurrent Conditions

Chapter 4. Control

4-25

Programming Notes:

1. The execution of the interruptible instructions
MOVE LONG, TEST BLOCK, and COMPARE

LOGICAL LONG can cause events for
general-register alteration and instruction
fetching. Additionally, MOVE LONG can

cause the storage-alteration event.

Interruption of such an instruction may cause
a PER event to be indicated more than once.
It may be necessary, therefore, for a program
to remove the redundant event indications
from the PER data. The following rules
govern the indication of the applicable events
during execution of these instructions:

a. The instruction-fetching event is indicated
whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption, except
that the event may be discarded (not indi-
cated) if it is the only PER event to be
indicated, the interruption is due to an
asynchronous interruption condition or the
performance of the stop function, and a
unit of operation of the instruction remains
to be executed.

b. The general-register-alteration event is
indicated on the initial execution and on
each resumption and does not depend on
whether or not the register actually is
changed.

c. The storage-alteration event is indicated
only when data has been stored in the
designated storage area by the portion of
the operation starting with the last initi-
ation and ending with the last byte trans-
ferred before the interruption. No special
indication is provided on premature inter-
ruptions as to whether the event will occur
again upon the resumption of the opera-
tion. When the designated storage area is
a single byte location, a storage-alteration
event can be recognized only once in the
execution of MOVE LONG.

2. The following is an outline of the general
action a program must take to delete multiple
entries in the PER data for an interruptible
instruction so that only one entry for each

complete execution of the instruction is
obtained:
4-26 ESA/390 Principles of Operation

a. Check to see if the PER address is equal
to the instruction address in the old PSW
and if the last instruction executed was
interruptible.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met and the event is
storage alteration, delete the event if
some part of the remaining destination
operand is within the designated storage
area.

Timing
The timing facilities include three facilities for

measuring time: the TOD clock, the clock
comparator, and the CPU timer.

In a multiprocessing configuration, a single TOD
clock may be shared by more than one CPU, or
each CPU may have a separate TOD clock. Each
CPU has its own clock comparator and CPU
timer.

The extended-TOD-clock facility and the TOD-
clock-control-override facility may be installed.

The extended-TOD-clock facility includes an
extension in length of the TOD clock, a TOD pro-
grammable register for each CPU, and the
instructions SET CLOCK PROGRAMMABLE
FIELD and STORE CLOCK EXTENDED.

The TOD-clock-control-override facility includes
the TOD-clock-control-override control, bit 10 of
control register 14.

Time-of-Day Clock

The time-of-day (TOD) clock provides a high-
resolution measure of real time suitable for the
indication of date and time of day. The cycle of
the clock is approximately 143 years.

In a configuration with more than one CPU, each
CPU may have a separate TOD clock, or more
than one CPU may share a clock, depending on
the model. In all cases, each CPU has access to
a single clock.

—m— e — — — —

—~— e e e e e — —

Format

The basic TOD clock is a 64-bit register. It is
extended with an additional 40 rightmost bits if the
extended-TOD-clock facility is installed. For ease
of description, the TOD clock is treated as a
104-bit register of which the rightmost 40 bits are
visible only if the extended-TOD-clock facility is
installed.

The TOD clock is a binary counter with the format
shown in the following illustration.

1 microsecond‘l

0 51 64 103

L—visible if—
Extended-TOD-Clock

Facility Is Installed

The TOD clock nominally is incremented by
adding a one in bit position 51 every microsecond.
In models having a higher or lower resolution, a
different bit position is incremented at such a fre-
guency that the rate of advancing the clock is the
same as if a one were added in bit position 51
every microsecond. The resolution of the TOD
clock is such that the incrementing rate is compa-
rable to the instruction-execution rate of the
model.

A TOD clock is said to be in a particular multiproc-
essing configuration if at least one of the CPUs
which shares that clock is in the configuration.
Conversely, if all CPUs having access to a partic-
ular TOD clock have been removed from a partic-
ular configuration, then the TOD clock is no longer
considered to be in that configuration.

When more than one TOD clock exists in the con-
figuration, incrementing is synchronized such that
all of the TOD clocks that are being incremented
are incremented at exactly the same rate.

When incrementing of the clock causes a carry to
be propagated out of bit position O, the carry is
ignored, and counting continues from zero. The
program is not alerted, and no interruption condi-
tion is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Incre-
menting of the clock does not depend on whether
the wait-state bit of the PSW is one or whether the

—_—— — —

CPU is in the operating, load, stopped, or check-
stop state. Its operation is not affected by CPU,
initial-CPU, or clear resets or by initial program
loading. Operation of the clock is also not
affected by the setting of the rate control or by an
initial-machine-loading operation. Depending on
the model and the configuration, a TOD clock may
or may not be powered independent of a CPU that
accesses it.

States

The following states are distinguished for the TOD
clock: set, not set, stopped, error, and not opera-
tional. The state determines the condition code
set by execution of STORE CLOCK and STORE
CLOCK EXTENDED. The clock is incremented,
and is said to be running, when it is in either the
set state or the not-set state.

Not-Set State: When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state.

When the clock is in the not-set state, execution of
STORE CLOCK or STORE CLOCK EXTENDED
causes condition code 1 to be set and the current
value of the running clock to be stored.

Stopped State: The clock enters the stopped
state when SET CLOCK is executed on a CPU
accessing that clock and the execution results in
the clock being set. This occurs when SET
CLOCK is executed without encountering any
exceptions and either any manual TOD-clock
control in the configuration is set to the enable-set
position or the TOD-clock-control-override control,
bit 10 of control register 14, is one. The
TOD-clock-control-override control is available if
the TOD-clock-control-override facility is installed.
The clock can be placed in the stopped state from
the set, not-set, and error states. The clock is not
incremented while in the stopped state.

When the clock is in the stopped state, execution
of STORE CLOCK or STORE CLOCK
EXTENDED by a CPU accessing that clock
causes condition code 3 to be set and the value of
the stopped clock to be stored.

Set State: The clock enters the set state only
from the stopped state. The change of state is
under control of the TOD-clock-sync-control bit, bit
2 of control register 0, of the CPU which most

Chapter 4. Control 4-27

— e e e e e e e e e e —

recently caused that clock to enter the stopped
state. If the bit is zero, the clock enters the set
state at the completion of execution of SET
CLOCK. If the bit is one, the clock remains in the
stopped state until the bit is set to zero on that
CPU, until another CPU executes a SET CLOCK
instruction affecting the clock, or until any other
clock in the configuration is incremented to a
value of all zeros in bit positions 32 through the
rightmost bit position that is incremented when the
clock is running. If an external time reference
(ETR) is installed, a signal from the ETR may be
used to set the set state from the stopped state.
If any clock is set to a value of all zeros in bit
positions 32 through the rightmost incremented bit
position and enters the set state as the result of a
signal from another clock, the updating of bits 32
through the rightmost incremented bit position of
the two clocks is in synchronism. Bits 0-31 of the
clocks may be different.

Incrementing of the clock begins with the first
stepping pulse after the clock enters the set state.

When the clock is in the set state, execution of
STORE CLOCK or STORE CLOCK EXTENDED
causes condition code 0 to be set and the current
value of the running clock to be stored.

Error State: The clock enters the error state
when a malfunction is detected that is likely to
have affected the validity of the clock value. It
depends on the model whether the clock can be
placed in this state. A timing-facility-damage
machine-check-interruption condition is generated
on each CPU which has access to that clock
whenever it enters the error state.

When STORE CLOCK or STORE CLOCK
EXTENDED is executed and the clock accessed
is in the error state, condition code 2 is set, and
the value stored is zero.

Not-Operational State: The clock is in the not-
operational state when its power is off or when it
is disabled for maintenance. It depends on the
model whether the clock can be placed in this
state. Whenever the clock enters the not-
operational state, a timing-facility-damage
machine-check-interruption condition is generated
on each CPU that has access to that clock.

When the clock is in the not-operational state,

execution of STORE CLOCK or STORE CLOCK

4-28 ESA/390 Principles of Operation

/

—— e — — — —

-

— e e e e e e e e e e e e —

EXTENDED causes condition code 3 to be set,
and zero is stored.

Changes in Clock State

When the TOD clock accessed by a CPU changes
value because of the execution of SET CLOCK or
changes state, interruption conditions pending for
the clock comparator, CPU timer, and
TOD-clock-sync check may or may not be recog-
nized for up to 1.048576 seconds (22° microsec-
onds) after the change.

The results of channel-subsystem-monitoring-
facility operations may be unpredictable as a
result of changes to the TOD clock.

Setting and Inspecting the Clock

The clock can be set to a specified value by exe-
cution of SET CLOCK if the manual TOD-clock
control of any CPU in the configuration is in the
enable-set position or the TOD-clock-control-
override control, bit 10 of control register 14, is
one. The TOD-clock-control-override control is
available if the TOD-clock-control-override facility
is installed. SET CLOCK sets bits of the clock
with the contents of corresponding bit positions of
a doubleword operand in storage.

Setting the clock replaces the values in all bit
positions from bit position O through the rightmost
position that is incremented when the clock is
running. However, on some models, the rightmost
bits starting at or to the right of bit 52 of the speci-
fied value are ignored, and zeros are placed in the
corresponding positions of the clock. Zeros are
also placed in positions to the right of bit position
63 of the clock.

The TOD clock can be inspected by executing
STORE CLOCK, which causes bits 0-63 of the
clock to be stored in an eight-byte operand in
storage, or by executing STORE CLOCK
EXTENDED, which causes bits 0-103 of the clock
to be stored in bytes 1-13 of a 16-byte operand in
storage. STORE CLOCK EXTENDED is available
when the extended-TOD-clock facility is installed.
STORE CLOCK EXTENDED stores zeros in the
leftmost byte, byte 0, of its storage operand, and it
obtains the TOD programmable field from bit posi-
tions 16-31 of the TOD programmable register and
stores it in byte positions 14 and 15 of the storage
operand. The operand stored by STORE CLOCK
EXTENDED has the following format:

—~—————

—m— e — — — — ——— — —

— e e e e e e e e e e e e e — —

— e e — — —

Programm-

Zeros TOD Clock

able Field

0 8 112

At some time in the future, STORE CLOCK
EXTENDED on new models will store a leftmost
extension of the TOD clock in byte position 0 of its
storage operand; see programming note

Two executions of STORE CLOCK or STORE
CLOCK EXTENDED, possibly on different CPUs
in the same configuration, always store different
values of the clock if the clock is running or, if
separate clocks are accessed, both clocks are
running and are synchronized. If the clock is
stopped, zeros are stored in the clock value, bits
8-111 of the storage operand, in positions to the
right of the rightmost bit position that is incre-
mented when the clock is running. The program-
mable field continues to be stored even when the
clock is stopped.

The values stored for a running clock by STORE
CLOCK or STORE CLOCK EXTENDED always
correctly imply the sequence of execution of these
instructions by one or more CPUs for all cases
where the sequence can be discovered by the
program. To ensure that unique values are
obtained when the value of a running clock is
stored, nonzero values may be stored in positions
to the right of the rightmost incremented bit posi-
tion. When the value of a running clock is stored
by STORE CLOCK EXTENDED, the value in bit
positions 64-103 of the clock (bit positions 72-111
of the storage operand) is always nonzero; this
ensures that values stored by STORE CLOCK
EXTENDED are always unique when compared
with values stored by STORE CLOCK and
extended on the right with zeros.

For the purpose of establishing uniqueness and
sequence of occurrence of the results of STORE
CLOCK and STORE CLOCK EXTENDED, the
64-bit value provided by STORE CLOCK may be
considered to be extended to 104 bits by
appending 40 zeros on the right, with the STORE
CLOCK value and STORE CLOCK EXTENDED
bits 8-111 then both being treated as 104-bit
unsigned binary integers.

In a configuration where more than one CPU
accesses the same clock, SET CLOCK is inter-

127

—_——— —

e e L

—e— e— e — —

locked such that the entire contents appear to be
updated concurrently; that is, if SET CLOCK
instructions are executed simultaneously by two
CPUs, the final result is either one or the other
value. If SET CLOCK is executed by one CPU
and STORE CLOCK or STORE CLOCK
EXTENDED by the other, the result obtained by
STORE CLOCK or STORE CLOCK EXTENDED
is either the entire old value or the entire new
value. When SET CLOCK is executed by one
CPU, a STORE CLOCK or STORE CLOCK
EXTENDED instruction executed by another CPU
may find the clock in the stopped state even when
the TOD-clock-sync-control bit, bit 2 of control reg-
ister 0, of each CPU is zero. Since the clock
enters the set state before incrementing, the first
STORE CLOCK or STORE CLOCK EXTENDED
instruction executed after the clock enters the set
state may still find the original value introduced by
SET CLOCK.

TOD Programmable Register

When the extended-TOD-clock facility is installed,
each CPU has a TOD programmable register, and
the instruction SET CLOCK PROGRAMMABLE
FIELD is provided. Bits 16-31 of the register
contain the programmable field that is appended
on the right to the TOD-clock value by STORE
CLOCK EXTENDED. The register has the fol-
lowing format:

Programmable

0000000000000000 Field

0 16 31

The register is loaded by SET CLOCK PRO-
GRAMMABLE FIELD. Bits 16-31 of the register
are stored in bit positions 112-127 of its storage
operand by STORE CLOCK EXTENDED. The
contents of the register are reset to a value of all
zeros by initial CPU reset.

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; for some applica-
tions, reference to the leftmost 32 bits of the
clock may provide sufficient resolution.

2. Communication between systems is facilitated
by establishing a standard time origin that is
the calendar date and time to which a clock
value of zero corresponds. January 1, 1900,
0 a.m. Coordinated Universal Time (UTC) is

Chapter 4. Control 4-29

—_——— — —

recommended as this origin, and it is said to
begin the standard epoch for the clock. This
is also the epoch used when the TOD clock is
synchronized to the external time reference
(ETR). Note that the former term, Greenwich
Mean Time (GMT), is now obsolete and has
been replaced with the more precise UTC.

. A program using the clock value as a

time-of-day and calendar indication must be
consistent with the programming support
under which the program is to be executed. If
the programming support uses the standard
epoch, bit 0 of the clock remains one through
the years 1972-2041. (Bit O turned on at
11:56:53.685248 (UTC) May 11, 1971.) Ordi-
narily, testing bit 0 for a one is sufficient to
determine if the clock value is in the standard
epoch.

. In converting to or from the current date or

time, the programming support must take into
account that “leap seconds” have been
inserted or deleted because of time-correction
standards. When the TOD clock has been set
correctly to a time within the standard epoch,
the sum of the accumulated leap seconds
must be subtracted from the clock time to
determine UTC time.

. Because of the limited accuracy of manually

setting the clock value, the rightmost bit posi-
tions of the clock, expressing fractions of a
second, are normally not valid as indications
of the time of day. However, they permit
elapsed-time measurements of high resol-
ution.

The following chart shows the time interval
between instants at which various bhit positions
of the TOD clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

4-30 ESA/390 Principles of Operation

/
/

TOD- Stepping Interval
Clock
Bit |Days|Hours|Min.| Seconds
51 0.000 001
47 0.000 016
43 0.000 256
39 0.004 096
35 0.065 536
31 1.048 576
27 16.777 216
23 4 28.435 456
19 1 11 34.967 296
15 19 5 19.476 736
11 12 17 25 11.627 776
7 203 14 43 6.044 416
3 (3257 19 29 36.710 656

7. The following chart shows the TOD clock

setting for 00:00:00 (0 am), UTC time, for
several dates: January 1, 1900, January 1,
1972, and for that instant in time just after
each of the 22 leap seconds that have
occurred through January, 1999. Each of
these leap seconds was inserted in the UTC
time scale beginning at 23:59:60 UTC of the
day previous to the one listed and ending at
00:00:00 UTC of the day listed.

Leap
Year |Mth|Day|Sec | Clock Setting (Hex)
1900 | 1 | 1 0000 0000 0OOO 0000
1972 |1 | 1 8126 D6OE 4600 0000
1972 | 7 | 1 1 | 820B A981 1E24 0000
1973 | 1 |1 2 | 82F3 OOAE E248 0000
1974 | 1 | 1 3 | 84BD E971 146C 0000
1975 | 1 | 1 4 | 8688 D233 4690 0000
1976 | 1 | 1 5 | 8853 BAF5 78B4 0000
1977 [1 | 1 6 | 8AlF E595 20D8 0000
1978 | 1 |1 7 | 8BEA CE57 52FC 0000
1979 | 1 |1 8 | 8DB5 B719 8520 0000
1980 | 1 | 1 9 | 8F80 9FDB B744 0000
1981 | 7 | 1 | 10 | 9230 5COF CD68 0000
1982 | 7 | 1 | 11 | 93FB 44D1 FF8C 0000
1983 | 7 | 1 | 12 | 95C6 2D94 31BO 0000
1985 | 7 | 1 | 13 | 995D 40F5 17D4 0000
1988 | 1 | 1 | 14 | 9DDA 69A5 57F8 0000
1990 | 1 | 1 | 15 | Al71 7D06 3E1C 0000
1991 | 1 | 1 | 16 | A33C 65C8 7040 0000
1992 | 7 | 1 | 17 | A5SEC 21FC 8664 0000
1993 | 7 | 1 | 18 | A7B7 OABE B888 0000
1994 | 7 | 1 | 19 | A981 F380 EAAC 0000
1996 | 1 | 1 | 20 | AC34 336F ECDO 0000
1997 7 1 | 21 | AEE3 EFA4 02F4 0000
1999 | 1 | 1 | 22 | B196 2F93 0518 0000

—e—e— e — —

—t— t— e e et e e e e e e —

8.

10.

11.

12.

13.

The stepping value of TOD-clock bit position
63, if implemented, is 2-12 microseconds, or
approximately 244 picoseconds. This value is
called a clock unit.

The following chart shows various time inter-
vals in clock units expressed in hexadecimal
notation.

Interval Clock Units (Hex)
1 microsecond 1000
1 millisecond 3E 8000
1 second F424 0000
1 minute 39 3870 0000
1 hour D69 3A40 0000
1 day 1 41DD 7600 0000
365 days 1CA E8C1 3E0Q0 0000
366 days 1CC 2A9E B400 0000
1,461 days* |72C E4E2 6E00 0000

* Number of days in four years,
including a Teap year. Note
that the year 1900 was not a
leap year. Thus, the four-
year span starting in 1900
has only 1,460 days.

. The charts in notes 6-8 are useful when

examining the value stored by STORE
CLOCK. Similar charts for use when exam-
ining the value stored by STORE CLOCK
EXTENDED are in programming notes at the
end of the definition of that instruction.

In a multiprocessing configuration, after the
TOD clock is set and begins running, the
program should delay activity for 229 micro-
seconds (1.048576 seconds) to ensure that
the CPU-timer, clock-comparator, and
TOD-clock-sync-check interruption conditions
are recognized by the CPU.

Due to the sequencing rules for the results of
STORE CLOCK and STORE CLOCK
EXTENDED, the execution of STORE CLOCK
may be considerably slower than that of
STORE CLOCK EXTENDED on models that
increment a bit position of the TOD clock to
the right of position 63.

Uniqueness of TOD-clock values can be
extended to apply to processors in separate
configurations by including a configuration
identification in the TOD programmable field.

At some time in the future, new models will
use a carry from bit position 0 of the TOD
clock to increment an additional eight-bit

— e e e e e e e e e e e e e — —

/

—m— e — — — —

binary counter. STORE CLOCK EXTENDED
will store the contents of this counter in byte
position 0 of its storage operand. A variation
of SET CLOCK will set the counter, as well as
the TOD clock. Variations of SET CLOCK
COMPARATOR and STORE CLOCK
COMPARATOR will manipulate a comparable
byte at the left of the clock comparator.
These actions will allow the TOD clock to con-
tinue to measure time within the standard
epoch after the current 143-year limit caused
by a carry from bit position 0 has been
exceeded, and they will allow continued use of
the clock comparator. It may be desired to
have programs that process 16-byte STORE
CLOCK EXTENDED operands take these
future developments into account.

TOD-Clock Synchronization

In a configuration with more than one CPU, each
CPU may have a separate TOD clock, or more
than one CPU may share a TOD clock, depending
on the model. In all cases, each CPU has access
to a single clock.

The TOD-clock-synchronization facility, in conjunc-
tion with a clock-synchronization program, makes
it possible to provide the effect of all CPUs in a
multiprocessing configuration sharing a single
TOD clock. The result is such that, to all pro-
grams storing the TOD-clock value, it appears that
all CPUs in the configuration read the same TOD
clock. The TOD-clock-synchronization facility pro-
vides these functions in such a way that even
though the number of CPUs sharing a TOD clock
is model-dependent, a single model-independent
clock-synchronization routine can be written. The
following functions are provided:

¢ Synchronizing the stepping rates for all TOD
clocks in the configuration.

e Comparing bits 32 through the rightmost incre-
mented bit of each clock in the configuration.
An unequal condition is signaled by an
external interruption with the interruption code
1003 hex, indicating the
TOD-clock-sync-check condition. When there
is only one clock in the configuration, this
comparison may alternatively be done by
comparing to bits of the ETR, in which case
an unequal condition is indicated by an
external-damage machine-check-interruption
condition. The machine-check-interruption

Chapter 4. Control 4-31

—_——— — —

—_——— —

_——— —

condition may not be recognized for up to
1.048576 seconds (22° microseconds) after
the unequal condition occurs.

e Setting a TOD clock to the stopped state.

e Causing a stopped clock, with the
TOD-clock-sync-control bit set to one, to start
incrementing when bits 32 through the right-
most incremented bit of any running clock in
the configuration are incremented to zero or,
when the clock is the only clock in the config-
uration, when an ETR signal occurs. This
permits the program to synchronize all clocks
to any particular clock or to the ETR without
requiring special operator action to select a
“master clock” as the source of the clock-
synchronization pulses.

Programming Notes:

1. TOD-clock synchronization provides for syn-
chronizing and checking only bits 32 through
the rightmost incremented bit of the TOD
clock. When more than one clock exists in
the configuration, the program must check for
synchronization of the leftmost bits and must
communicate the leftmost bit values from one
CPU to another in order to correctly set the
TOD-clock contents. When a single clock
exists in the configuration and it is synchro-
nized with the ETR, bits 0-31 of the clock may
be set different from those of the ETR.

2. The TOD-clock-sync-check external inter-
ruption can be used to determine the number
of TOD clocks in the configuration.

Clock Comparator

The clock comparator provides a means of
causing an interruption when the TOD-clock value
exceeds a value specified by the program.

In a configuration with more than one CPU, each
CPU has a separate clock comparator.

The clock comparator has the same format as the
basic TOD clock. The clock comparator nominally
consists of bits 0-47, which are compared with the
corresponding bits of the TOD clock. In some
models, higher resolution is obtained by providing
more than 48 bits. The bits in positions provided
in the clock comparator are compared with the
corresponding bits of the clock. When the resol-
ution of the clock is less than that of the clock
comparator, the contents of the clock comparator

4-32 ESA/390 Principles of Operation

are compared with the clock value as this value
would be stored by executing STORE CLOCK.

The clock comparator causes an external inter-
ruption with the interruption code 1004 hex. A
request for a clock-comparator interruption exists
whenever either of the following conditions exists:

1. The TOD clock is running and the value of the
clock comparator is less than the value in the
compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned
binary arithmetic.

2. The TOD clock is in the error state or the not-
operational state.

A request for a clock-comparator interruption does
not remain pending when the value of the clock
comparator is made equal to or greater than that
of the TOD clock or when the value of the TOD
clock is made less than the clock-comparator
value. The latter may occur as a result of the
TOD clock either being set or wrapping to zero.

The clock comparator can be inspected by exe-
cuting the instruction STORE CLOCK
COMPARATOR and can be set to a specified
value by executing the SET CLOCK
COMPARATOR instruction.

The contents of the clock comparator are initial-
ized to zero by initial CPU reset.

Programming Notes:

1. An interruption request for the clock
comparator persists as long as the clock-
comparator value is less than that of the TOD
clock or as long as the TOD clock is in the
error state or the not-operational state. There-
fore, one of the following actions must be
taken after an external interruption for the
clock comparator has occurred and before the
CPU is again enabled for external inter-
ruptions: the value of the clock comparator
must be replaced, the TOD clock must be set,
the TOD clock must wrap to zero, or the
clock-comparator-subclass mask must be set
to zero. Otherwise, loops of external inter-
ruptions are formed.

2. The instruction STORE CLOCK or STORE
CLOCK EXTENDED may store a value which
is greater than that in the clock comparator,
even though the CPU is enabled for the clock-

comparator interruption. This is because the
TOD clock may be incremented one or more
times between when instruction execution is
begun and when the clock value is accessed.
In this situation, the interruption occurs when
the execution of STORE CLOCK or STORE
CLOCK EXTENDED is completed.

CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a specified amount of time has elapsed.

In a configuration with more than one CPU, each
CPU has a separate CPU timer.

The CPU timer is a binary counter with a format
which is the same as that of the basic TOD clock,
except that bit 0 is considered a sign. The CPU
timer nominally is decremented by subtracting a
one in bit position 51 every microsecond. In
models having a higher or lower resolution, a dif-
ferent bit position is decremented at such a fre-
guency that the rate of decrementing the CPU
timer is the same as if a one were subtracted in
bit position 51 every microsecond. The resolution
of the CPU timer is such that the stepping rate is
comparable to the instruction-execution rate of the
model.

The CPU timer requests an external interruption
with the interruption code 1005 hex whenever the
CPU-timer value is negative (bit 0 of the CPU
timer is one). The request does not remain
pending when the CPU-timer value is changed to
a honnegative value.

When both the CPU timer and the TOD clock are
running, the stepping rates are synchronized such
that both are stepped at the same rate. Normally,
decrementing the CPU timer is not affected by
concurrent I/O activity. However, in some models
the CPU timer may stop during extreme 1/O
activity and other similar interference situations.
In these cases, the time recorded by the CPU
timer provides a more accurate measure of the
CPU time used by the program than would have
been recorded had the CPU timer continued to
step.

The CPU timer is decremented when the CPU is
in the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in

which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer may or may not be decremented when
the TOD clock is in the error, stopped, or not-
operational state.

Depending on the model, the CPU timer may or
may not be decremented when the CPU is in the
check-stop state.

The CPU timer can be inspected by executing the
instruction STORE CPU TIMER and can be set to
a specified value by executing the SET CPU
TIMER instruction.

The CPU timer is set to zero by initial CPU reset.

Programming Notes:

1. The CPU timer in association with a program
may be used both to measure CPU-execution
time and to signal the end of a time interval
on the CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as 1/O interference, the
availability of pages, and instruction retry.
Therefore, repeated measurements of the
same sequence on the same installation may
differ.

3. The fact that a CPU-timer interruption does
not remain pending when the CPU timer is set
to a positive value eliminates the problem of
an undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled
for CPU-timer interruptions and the CPU timer
value goes from positive to negative.

4. The fact that CPU-timer interruptions are
requested whenever the CPU timer is nega-
tive (rather than just when the CPU timer goes
from positive to negative) eliminates the
requirement for testing a value to ensure that
it is positive before setting the CPU timer to
that value.

As an example, assume that a program being
timed by the CPU timer is interrupted for a
cause other than the CPU timer, external
interruptions are disallowed by the new PSW,
and the CPU-timer value is then saved by
STORE CPU TIMER. This value could be
negative if the CPU timer went from positive
to negative since the interruption. Subse-

Chapter 4. Control 4-33

qguently, when the program being timed is to
continue, the CPU timer may be set to the
saved value by SET CPU TIMER. A
CPU-timer interruption occurs immediately
after external interruptions are again enabled
if the saved value was negative.

The persistence of the CPU-timer-interruption
request means, however, that after an
external interruption for the CPU timer has
occurred, the value of the CPU timer must be
replaced, the value in the CPU timer must
wrap to a positive value, or the
CPU-timer-subclass mask must be set to zero
before the CPU is again enabled for external
interruptions. Otherwise, loops of external
interruptions are formed.

5. The instruction STORE CPU TIMER may
store a negative value even though the CPU
is enabled for the interruption. This is
because the CPU-timer value may be decre-
mented one or more times between when
instruction execution is begun and when the
CPU timer is accessed. In this situation, the
interruption occurs when the execution of
STORE CPU TIMER is completed.

Externally Initiated Functions

Resets
Five reset functions are provided:

e CPU reset
Initial CPU reset
e Subsystem reset
e Clear reset

e Power-on reset

CPU reset provides a means of clearing
equipment-check indications and any resultant
unpredictability in the CPU state with the least
amount of information destroyed. In particular, it
is used to clear check conditions when the CPU

4-34 ESA/390 Principles of Operation

state is to be preserved for analysis or resumption
of the operation.

Initial CPU reset provides the functions of CPU
reset together with initialization of the current
PSW, CPU timer, clock comparator, TOD pro-
grammable register, prefix, and control registers.

Subsystem reset provides a means for clearing
floating interruption conditions as well as for
invoking I/O-system reset.

Clear reset causes initial CPU reset and sub-
system reset to be performed and, additionally,
clears or initializes all storage locations and regis-
ters in all CPUs in the configuration, with the
exception of the TOD clock. Such clearing is
useful in debugging programs and in ensuring
user privacy. Clear reset also releases all locks
used by the PERFORM LOCKED OPERATION
instruction. Clearing does not affect external
storage, such as direct-access storage devices
used by the control program to hold the contents
of unaddressable pages.

The power-on-reset sequences for the TOD clock,
main storage, and the channel subsystem may be
included as part of the CPU power-on sequence,
or the power-on sequence for these units may be
initiated separately.

CPU reset, initial CPU reset, subsystem reset, and
clear reset may be initiated manually by using the
operator facilities (see [Chapter 12, “Operator]
[Eacilities). Initial CPU reset is part of the initial-
program-loading function] Figure 4-6 on|
summarizes how these four resets are
manually initiated. Power-on reset is performed
as part of turning power on. The reset actions are
tabulated in |[Figure 4-7 on page 4-36} For infor-
mation concerning what resets can be performed
by the SIGNAL PROCESSOR instruction, see
[Prefix” on page 4-43

Function Performed on?

key

System-reset-clear
key

Load-normal key

Load-clear key

Clear reset?
Initial CPU reset,
followed by IPL

Clear reset2,
followed by IPL

Clear reset2

CPU reset

Clear reset2

CPU on Which Key | Other CPUs | Remainder of
Key Activated Was Activated in Config Configuration
System-reset-normal |CPU reset CPU reset Subsystem reset

Clear resets3

Subsystem reset

Clear reset3

Explanation:

other CPUs.

2 Only the CPU elements of this reset apply.

3 Only the non-CPU elements of this reset apply.

1 Activation of a system-reset or load key may change the config-
uration, including the connection with I/0, storage units, and

Figure 4-6. Manual Initiation of Resets

Chapter 4. Control

4-35

Reset Function
Sub- Initial Power
system| CPU CPU |Clear | -On
Area Affected Reset |Reset| Reset |Reset |Reset
CPU U S St St S
PSW U u/v Cx1 C*1 C+
Prefix U u/v C C C
CPU timer U u/v C C C
Clock comparator U u/v C C C
TOD programmable register] u/v C C C
Control registers] u/v I I I
Access registers U u/v u/v C C
General registers U u/v u/v C C
Floating-point registers U u/v u/v o C
Vector-facility registers U u/v u/v C C
Storage keys]] U C C2
Volatile main storage]] U C C2
Nonvolatile main storage U U U C U
Expanded storage us us us us Ca
TOD clock U4 U4 U4 U4 T2
Floating interruption C U U C c2
conditions
I/0 system R 1] U R RS
PERFORM LOCKED OPERATION U U U RC RP
locks

Explanation:

* Clearing the contents of the PSW to zero causes the PSW
to be invalid.

1 When the IPL sequence follows the reset function on that
CPU, the CPU does not necessarily enter the stopped
state, and the PSW is not necessarily cleared to zeros.

2 When these units are separately powered, the action is
performed only when the power for the unit is turned on.

3 Access to change expanded storage at the time a reset
function is performed may cause the contents of the 4K-
byte block in expanded storage to be unpredictable.
Access to examine expanded storage does not affect the
contents of the expanded storage.

4 Access to the TOD clock by means of STORE CLOCK at the
time a reset function is performed does not cause the
value of the TOD clock to be affected.

5 When the channel subsystem is separately powered or con-
sists of multiple elements which are separately powered,
the reset action is applied only to those subchannels,
channel paths, and I/0 control units and devices on those
paths associated with the element which is being powered
on.

Figure 4-7 (Part 1 of 2). Summary of Reset Actions

4-36 ESA/390 Principles of Operation

Explanation (Continued):

C

RC

RP

u/v

The condition or contents are cleared.
valid checking-block code.

The state or contents are initialized.
value with valid checking-block code.

I/0-system reset is

subsystem.

ones held by CPUs already powered on.

The CPU is reset; current operations, if any, are term-
inated; the ALB and TLB are cleared of entries; inter-
ruption conditions in the CPU are cleared; and the CPU
The effect of perform-
ing the start function is unpredictable when the stopped
state has been entered by means of a reset.

is placed in the stopped state.

The TOD clock is initialized to zero and validated; it

enters the not-set state.

The state, condition, or contents of the field remain
However, the result is unpredictable if an
operation is in progress that changes the state, con-
dition, or contents of the field at the time of reset.

unchanged.

formed.
of the contents may be made valid.

If the area
affected is a field, the contents are set to zero with

If the area af-
fected is a field, the contents are set to the initial

performed in the channel subsystem.
As part of this reset, system reset is signaled to all
I/0 control units and devices attached to the channel

A11 locks in the configuration are released.

A1T1 Tlocks in the configuration are released except for

The contents remain unchanged, provided the field is not
being changed at the time the reset function is per-
However, on some models the checking-block code
The result is un-
predictable if an operation is in progress that changes
the contents of the field at the time of reset.

Figure 4-7 (Part 2 of 2). Summary of Reset Actions

CPU Reset
CPU reset causes the following actions:

1.

The execution of the current instruction or
other processing sequence, such as an inter-
ruption, is terminated, and all program-
interruption and supervisor-call-interruption
conditions are cleared.

. Any pending external-interruption conditions

which are local to the CPU are cleared.
Floating external-interruption conditions are
not cleared.

. Any pending machine-check-interruption con-

ditions and error indications which are local to

the CPU and any check-stop states are
cleared. Floating machine-check-interruption
conditions are not cleared. Any machine-
check condition which is reported to all CPUs
in the configuration and which has been made
pending to a CPU is said to be local to the
CPU.

4. All copies of prefetched instructions or oper-

ands are cleared. Additionally, any results to
be stored because of the execution of
instructions in the current checkpoint interval
are cleared.

. The ART-lookaside buffer and translation-

lookaside buffer are cleared of entries.

Chapter 4. Control 4-37

6. The CPU is placed in the stopped state after
actions 1-5 have been completed. When the
IPL sequence follows the reset function on
that CPU, the CPU enters the load state at
the completion of the reset function and does
not necessarily enter the stopped state during
the execution of the reset operation.

Registers, storage contents, and the state of con-
ditions external to the CPU remain unchanged by
CPU reset. However, the subsequent contents of
the register, location, or state are unpredictable if
an operation is in progress that changes the con-
tents at the time of the reset. A lock held by the
CPU when executing PERFORM LOCKED OPER-
ATION is not released by CPU reset.

When the reset function in the CPU is initiated at
the time the CPU is executing an I/O instruction or
is performing an I/O interruption, the current oper-
ation between the CPU and the channel sub-
system may or may not be completed, and the

resultant state of the associated channel-
subsystem facility may be unpredictable.
Programming Note: Most operations which

would change a state, a condition, or the contents
of a field cannot occur when the CPU is in the
stopped state. However, some signal-processor
functions and some operator functions may
change these fields. To eliminate the possibility of
losing a field when CPU reset is issued, the CPU
should be stopped, and no operator functions
should be in progress.

Initial CPU Reset

Initial CPU reset combines the CPU reset func-
tions with the following clearing and initializing
functions:

1. The contents of the current PSW, prefix, CPU
timer, clock comparator, and TOD program-
mable register are set to zero. When the IPL
sequence follows the reset function on that
CPU, the contents of the PSW are not neces-
sarily set to zero.

2. The contents of control registers are set to
their initial value.

These clearing and initializing functions include
validation.

Setting the current PSW to zero causes the PSW
to be invalid, since PSW bit 12 must be one.

4-38 ESA/390 Principles of Operation

Thus, if the CPU is placed in the operating state
after a reset without first introducing a new PSW,
a specification exception is recognized.

Subsystem Reset

Subsystem reset operates only on those elements
in the configuration which are not CPUs. It per-
forms the following actions:

1. 1/O-system reset is performed by the channel
subsystem (see [l/O-System Reset” on|
page 17-9).

2. All floating interruption conditions in the con-
figuration are cleared.

As part of [I/O-system reset, pending
I/O-interruption conditions are cleared, and system
reset is signaled to all control units and devices
attached to the channel subsystem (see
[l/O-System Reset” on page 17-9). The effect of
system reset on I/O control units and devices and
the resultant control-unit and device state are
described in the appropriate System Library publi-
cation for the control unit or device. A system
reset, in general, resets only those functions in a
shared control unit or device that are associated
with the particular channel path signaling the
reset.

Clear Reset
Clear reset combines the initial-CPU-reset function
with an initializing function which causes the fol-
lowing actions:

1. The access, general, and floating-point regis-
ters of those CPUs which are in the configura-
tion are set to zero.

2. The registers (vector-status register, vector-
mask register, vector-activity count, and all
vector registers) of those vector facilities, if
any, which are in the configuration are cleared
to zero with valid checking-block code.

3. The contents of the main storage in the con-
figuration and the associated storage keys are
set to zero with valid checking-block code.

4. The locks used by any CPU in the configura-
tion when executing the PERFORM LOCKED
OPERATION instruction are released.

5. A subsystem reset is performed.

Validation is included in setting registers and in
clearing storage and storage keys.

Programming Notes:

1. For the CPU-reset operation not to affect the
contents of fields that are to be left
unchanged, the CPU must not be executing
instructions and must be disabled for all inter-
ruptions at the time of the reset. Except for
the operation of the CPU timer and for the
possibility of a machine-check interruption
occurring, all CPU activity can be stopped by
placing the CPU in the wait state and by disa-
bling it for /O and external interruptions. To
avoid the possibility of causing a reset at the
time that the CPU timer is being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

2. CPU reset, initial CPU reset, subsystem reset,
and clear reset do not affect the value and
state of the TOD clock.

3. The conditions under which the CPU enters
the check-stop state are model-dependent and
include malfunctions that preclude the com-
pletion of the current operation. Hence, if
CPU reset or initial CPU reset is executed
while the CPU is in the check-stop state, the
contents of the PSW, registers, and storage
locations, including the storage keys and the
storage location accessed at the time of the
error, may have unpredictable values, and, in
some cases, the contents may still be in error
after the check-stop state is cleared by these
resets. In this situation, a clear reset is
required to clear the error.

Power-On Reset

The power-on-reset function for a component of
the machine is performed as part of the power-on
sequence for that component.

The power-on sequences for the TOD clock,
vector facility, main storage, expanded storage,
and channel subsystem may be included as part
of the CPU power-on sequence, or the power-on
sequence for these units may be initiated sepa-
rately. The following sections describe the
power-on resets for the CPU, TOD clock, vector
facility, main storage, expanded storage, and
channel subsystem. See also [Chapter 17, “I/O|
[Support Functions,”] and the appropriate System
Library publication for the channel subsystem,
control units, and 1/O devices.

CPU Power-On Reset: The power-on reset
causes initial CPU reset to be performed and may
or may not cause |/O-system reset to be per-
formed in the channel subsystem. The contents
of general registers, access registers, and floating-
point registers are cleared to zeros with valid
checking-block code. Locks used by PERFORM
LOCKED OPERATION and associated with the
CPU are released unless they are held by a CPU
already powered on.

TOD-Clock Power-On Reset: The power-on
reset causes the value of the TOD clock to be set
to zero with valid checking-block code and causes
the clock to enter the not-set state.

Vector-Facility Power-On Reset: The power-on
reset causes the registers of the vector facility
(vector-status register, vector-mask register,
vector-activity count, and all vector registers) to be
cleared to zeros with valid checking-block code.

Main-Storage Power-On Reset: For volatile
main storage (one that does not preserve its con-
tents when power is off) and for storage keys,
power-on reset causes zeros with valid checking-
block code to be placed in these fields. The con-
tents of nonvolatile main storage, including the
checking-block code, remain unchanged.

Expanded-Storage Power-On Reset: The con-
tents of the expanded storage are cleared to zeros
with valid checking-block code.

Channel-Subsystem Power-On Reset: The
channel-subsystem power-on reset causes
I/O-system reset to be performed in the channel
subsystem. (See ['l/O-System Reset” on|

page 17-9)

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a
designated device and for initiating execution of
that program.

Some models may provide additional controls and
indications relating to IPL; this additional informa-
tion is specified in the System Library publication
for the model.

IPL is initiated manually by setting the load-unit-

address controls to a four-digit number to desig-
nate an input device and by subsequently

Chapter 4. Control 4-39

activating the load-clear or load-normal key for a
particular CPU. In the description which follows,
the term “this CPU” refers to the CPU in the con-
figuration for which the load-clear or load-normal
key was activated.

Activating the load-clear key causes a clear reset
to be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU
reset to be propagated to all other CPUs in the
configuration, and a subsystem reset to be per-
formed on the remainder of the configuration.

In the loading part of the operation, after the
resets have been performed, this CPU then enters
the load state. This CPU does not necessarily
enter the stopped state during the execution of the
reset operations. The load indicator is on while
the CPU is in the load state.

Subsequently, a channel-program read operation
is initiated from the 1/O device designated by the
load-unit-address controls. The effect of executing
the channel program is as if a format-0 CCW in
absolute storage location 0 specified a read
command with the modifier bits zeros, a data
address of zero, a byte count of 24, the chain-
command and SLI flags ones, and all other flags
zeros.

The details of the channel-subsystem portion of
the IPL operation are defined in [lInitial Program|
[Loading” on page 17-13.

When the IPL I/O operation is completed success-
fully, the subsystem-identification word of the IPL
device is stored in absolute storage locations
184-187, zeros are stored in absolute storage
locations 188-191, and a new PSW is loaded from
absolute storage locations 0-7. If the PSW
loading is successful and if no machine malfunc-
tions are detected, this CPU leaves the load state,
and the load indicator is turned off. If the rate
control is set to the process position, the CPU
enters the operating state, and the CPU operation
proceeds under control of the new PSW. If the
rate control is set to the instruction-step position,
the CPU enters the stopped state, with the manual
indicator on, after the new PSW is loaded.

If the IPL 1/O operation or the PSW loading is not
completed successfully, the CPU remains in the

4-40 ESA/390 Principles of Operation

load state, and the load indicator remains on. The
contents of absolute storage locations 0-7 are
unpredictable.

Store Status

The store-status operation places the contents of
the CPU registers, except for the TOD clock, in
assigned storage locations and in a store-status
extended save area.

The store-status operation can be initiated manu-
ally by use of the store-status key (see
[Chapter 12, “Operator Facilities”). The operation
can also be initiated at the addressed CPU by
executing SIGNAL PROCESSOR, specifying the
stop-and-store-status order.

Figure 4-8 lists the fields that are stored in
assigned storage locations, their lengths, and their
locations in main storage.

Length |Absolute
Field in Bytes|Address
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Access registers 0-15 64 288
F1-pt registers 0, 2, 4, 6 32 352
General registers 0-15 64 384
Control registers 0-15 64 448

Figure 4-8. Assigned Storage Locations for Store
Status

When the basic-floating-point-extensions facility is
installed, the extended-save-area control, bit 2 of
control register 14, is one, and bits 1-19 of the
word at absolute locations 212-215 are not all
zeros, then other fields are stored in a store-status
extended save area. Figure 4-9 lists the fields
that are stored, their lengths, and their offsets
within the area. Bytes 144-4095 of the extended
save area remain unchanged.

Length Byte

Field in Bytes| Offset
F1-pt registers 0-15 128 0
F1-pt-control register 4 128
Reserved (zeros stored) 12 132

Figure 4-9. Store-Status Extended Save Area

The address of the store-status extended save
area is formed by appending 12 zeros to the right
of bits 1-19 of the word at absolute locations
212-215. This address is treated as a 31-bit
absolute address. If the 4096-byte block of
storage at the address is not available in the con-
figuration, or if bits 1-19 of locations 212-215 are
all zeros, storing into the extended-save area is
not performed.

During the storing into the assigned storage
locations and the extended save area, the con-
tents of the registers are not changed. If a
machine error is encountered during the operation,
the CPU enters the check-stop state.

Execution of SIGNAL PROCESSOR specifying the
store-status-at-address order or the store-
extended-status-at-address order causes some or
all of the same status information to be stored by
the addressed CPU at designated locations. See
[‘Signal-Processor Orders.’|

Multiprocessing

The multiprocessing facility provides for the inter-
connection of CPUs, via a common main storage,
in order to enhance system availability and to
share data and resources. The multiprocessing
facility includes the following facilities:

e Shared main storage
¢ CPU-to-CPU interconnection
e TOD-clock synchronization

Associated with these facilities are two external-
interruption conditions (TOD-clock-sync check and
malfunction alert), which are described in
[Chapter 6, “Interruptions’, and control-register
positions for the TOD-clock-sync-control bit and
for the masks for the external-interruption condi-
tions, which are listed in [‘Control Registers” on|

I/O-interruption conditions are floating and can be
accepted by any CPU in the configuration.

Shared Main Storage

The shared-main-storage facility permits more
than one CPU to have access to common main-
storage locations. All CPUs having access to a
common main-storage location have access to the
entire 4K-byte block containing that location and to
the associated storage key. The channel sub-
system and all CPUs in the configuration refer to a
shared main-storage location using the same
absolute address.

CPU-Address Identification

Each CPU has a 16-bit unsigned binary integer
assigned, called its CPU address. A CPU
address uniquely identifies one CPU within a con-
figuration. The CPU is designated by specifying
this address in the CPU-address field of SIGNAL
PROCESSOR. The CPU signaling a malfunction
alert, emergency signal, or external call is identi-
fied by storing this address in the CPU-address
field with the interruption. The CPU address is
assigned during system installation and is not
changed as a result of reconfiguration changes.
The program can determine the address of the
CPU by using STORE CPU ADDRESS.

CPU Signaling and Response

The CPU-signaling-and-response facility consists
of SIGNAL PROCESSOR and a mechanism to
interpret and act on several order codes. The
facility provides for communications among CPUs,
including transmitting, receiving, and decoding a
set of assigned order codes; initiating the specified
operation; and responding to the signaling CPU.
A CPU can address SIGNAL PROCESSOR to
itself. SIGNAL PROCESSOR is described in

The channel subsystem, including all subchannels,
in a multiprocessing configuration can be
accessed by all CPUs in the configuration.

[Chapter 10, “Control Instructions.”|

Signal-Processor Orders

The signal-processor orders are specified in bit
positions 24-31 of the second-operand address of
SIGNAL PROCESSOR and are encoded as
shown in[Figure 4-10 on page 4-42|

Chapter 4. Control 4-41

Code

(Hex) Order
00 Unassigned

01 Sense

02 External call

03 Emergency signal
04 Start

05 Stop

06 Restart

07 Unassigned

08 Unassigned

09 Stop and store status
0A Unassigned

0B Initial CPU reset

0C CPU reset

oD Set prefix

0E Store status at address
11 Store extended status at address
12-FF | Unassigned

Figure 4-10. Encoding of Orders
The orders are defined as follows:

Sense: The addressed CPU presents its status
to the issuing CPU (see [Status Bits” on|
for a definition of the bits). No other
action is caused at the addressed CPU. The
status, if not all zeros, is stored in the general reg-
ister designated by the R:i field of the SIGNAL
PROCESSOR instruction, and condition code 1 is
set; if all status bits are zeros, condition code 0 is
set.

External Call: An external-call external-
interruption condition is generated at the
addressed CPU. The interruption condition
becomes pending during the execution of SIGNAL
PROCESSOR. The associated interruption occurs
when the CPU is enabled for that condition and
does not necessarily occur during the execution of
SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. Only one
external-call condition can be kept pending in a
CPU at a time. The order is effective only when
the addressed CPU is in the stopped or the oper-
ating state.

Emergency Signal: An emergency-signal
external-interruption condition is generated at the
addressed CPU. The interruption condition
becomes pending during the execution of SIGNAL
PROCESSOR. The associated interruption occurs

4-42 ESA/390 Principles of Operation

when the CPU is enabled for that condition and
does not necessarily occur during the execution of
SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. At any one
time the receiving CPU can keep pending one
emergency-signal condition for each CPU in the
configuration, including the receiving CPU itself.
The order is effective only when the addressed
CPU is in the stopped or the operating state.

Start: The addressed CPU performs the start
function (see [Stopped, Operating, Load, and|
[Check-Stop States” on page 4-1). The CPU does
not necessarily enter the operating state during
the execution of SIGNAL PROCESSOR. The
order is effective only when the addressed CPU is
in the stopped state. The effect of performing the
start function is unpredictable when the stopped
state has been entered by reset.

Stop: The addressed CPU performs the stop
function (see [‘Stopped, Operating, Load, and|
[Check-Stop States” on page 4-1). The CPU does
not necessarily enter the stopped state during the
execution of SIGNAL PROCESSOR. The order is
effective only when the CPU is in the operating
state.

Restart: The addressed CPU performs the
restart operation (see [‘Restart Interruption” on|
. The CPU does not necessarily
perform the operation during the execution of
SIGNAL PROCESSOR. The order is effective
only when the addressed CPU is in the stopped or
the operating state.

Stop and Store Status: The addressed CPU
performs the stop function, followed by the store-
status operation (see [Store _ Status” _on|
[page 4-40). The CPU does not necessarily com-
plete the operation, or even enter the stopped
state, during the execution of SIGNAL
PROCESSOR. The order is effective only when
the addressed CPU is in the stopped or the oper-
ating state.

Initial CPU Reset: The addressed CPU performs
initial CPU reset (see [‘Resets” on page 4-34).
The execution of the reset does not affect other
CPUs and does not cause I/O to be reset. The
reset operation is not necessarily completed
during the execution of SIGNAL PROCESSOR.

CPU Reset: The addressed CPU performs CPU
reset (see ['Resets” on page 4-34). The execution
of the reset does not affect other CPUs and does
not cause /O to be reset. The reset operation is
not necessarily completed during the execution of
SIGNAL PROCESSOR.

Set Prefix: The contents of bit positions 1-19 of
the parameter register of the SIGNAL
PROCESSOR instruction are treated as a prefix
value, which replaces the contents of the prefix
register of the addressed CPU. Bit 0 and bits
20-31 of the parameter register are ignored. The
order is accepted only if the addressed CPU is in
the stopped state, the value to be placed in the
prefix register designates a location which is avail-
able in the configuration, and no other condition
precludes accepting the order. Verification of the
stopped state of the addressed CPU and of the
availability of the designated storage is performed
during execution of SIGNAL PROCESSOR. If
accepted, the order is not necessarily completed
during the execution of SIGNAL PROCESSOR.

The parameter register has the following format:

111111711171
0 1 20 31

/ Prefix Value

The set-prefix order is completed as follows:

e |f the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit
22 (incorrect state) of the general register des-
ignated by the Ri field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

¢ The value to be placed in the prefix register of
the addressed CPU is tested for the avail-
ability of the designated storage. The abso-
lute address of a 4K-byte area of storage is
formed by appending 12 zeros to the right of
bits 1-19 of the parameter value. This
address is treated as a 31-bit absolute
address regardless of whether the sending
and receiving CPUs are in the 24-bit or 31-bit
addressing mode. The 4K-byte block of

storage at this address is accessed. The
access is not subject to protection, and the
associated reference bit may or may not be
set to one. If the block is not available in the
configuration, the order is not accepted by the
addressed CPU, bit 23 (invalid parameter) of
the general register designated by the R1 field
of the SIGNAL PROCESSOR instruction is set
to one, and condition code 1 is set.

¢ The value is placed in the prefix register of the
addressed CPU.

e The ALB and TLB of the addressed CPU are
cleared of their contents.

e A serializing and checkpoint-synchronizing
function is performed on the addressed CPU
following insertion of the new prefix value.

Store Status at Address: The contents of bit
positions 1-22 of the parameter register of the
SIGNAL PROCESSOR instruction are used as the
origin of a 512-byte save area. Bits 0 and 23-31 of
the parameter register are ignored.

Status of the addressed CPU is stored in the des-
ignated save area.

The order is accepted only if the addressed CPU
is in the stopped state, the save-area origin desig-
nates a location that is available in the configura-
tion, and no other condition precludes accepting
the order. Verification of the stopped state of the
addressed CPU and the availability of the desig-
nated storage is performed during the execution of
SIGNAL PROCESSOR. If accepted, the order is
not necessarily completed during the execution of
SIGNAL PROCESSOR.

The parameter register has the following format:

111111117
01 23 31

/ Save-Area Origin

[Figure 4-11 on page 4-44 lists the fields that are
stored in the save area, their lengths, and their
offsets from the beginning of the area.

Chapter 4. Control 4-43

Length Byte

Field in Bytes| Offset
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Access registers 0-15 64 288
F1-pt registers 0, 2, 4, 6 32 352
General registers 0-15 64 384
Control registers 0-15 64 448

Figure 4-11. Save-Area Locations for Store-Status-at-
Address Order

The store-status-at-address order is completed as
follows.

e |f the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit
22 (incorrect state) of the general register des-
ignated by the R: field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

e The save area is tested for the availability of
the designated storage. The absolute address
of the save area is formed by appending nine
zeros to the right of bits 1-22 of the parameter
value. This address is treated as a 31-bit
absolute address regardless of whether the
sending and receiving CPUs are in the 24-bit
or 31-bit addressing mode. The 512-byte
block of storage at this address is accessed.
The access is not subject to protection, and
the associated reference bit may or may not
be set to one. If the block is not available in
the configuration, the order is not accepted by
the addressed CPU, bit 23 (invalid parameter)
of the general register designated by the R:
field of the SIGNAL PROCESSOR instruction
is set to one, and condition code 1 is set.

e Status of the addressed CPU is stored in the
save area, as indicated in Figure 4-11. Bytes
0-215, 232-255, and 268-287 of the save area
remain unchanged.

¢ A serialization and checkpoint-synchronization
function is performed on the addressed CPU
following storing of the status.

Store Extended Status at Address: The con-
tents of bit positions 1-22 of the parameter register
of the SIGNAL PROCESSOR instruction are used

4-44 ESA/390 Principles of Operation

as the origin of a 512-byte save area. Bits 0 and
23-31 of the parameter register are ignored. The
contents of bit positions 1-19 of bytes 212-215 of
the save area are used as the origin of a
4096-byte extended save area. Bits 0 and 20-31
of bytes 212-215 are ignored.

Status of the addressed CPU is stored in the des-
ignated save area and extended save area.

The order is accepted only if the basic-floating-
point-extensions facility is installed, the addressed
CPU is in the stopped state, the save-area and
extended-save-area origins designate locations
that are available in the configuration, and no
other condition precludes accepting the order.
Verification of the presence of the facility, the
stopped state of the addressed CPU, and the
availability of the designated storage is performed
during the execution of SIGNAL PROCESSOR. If
accepted, the order is not necessarily completed
during the execution of SIGNAL PROCESSOR.

The parameter register has the following format:

111111117
0 1 23 31

/ Save-Area Origin

Figure 4-12 lists the fields in the save area, their
lengths, and their offsets from the beginning of the
area. The field in byte positions 212-215 is pro-
vided by the program. The other fields are stored
during the execution of the operation specified by
the order.

Length Byte

Field in Bytes| Offset
Extended-save-area address 4 212
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Access registers 0-15 64 288
F1-pt registers 0, 2, 4, 6 32 352
General registers 0-15 64 384
Control registers 0-15 64 448

Figure 4-12. Save-Area Locations for Store-Extended-
Status-at-Address Order

The extended-save-area address in bytes 212-215
of the save area has the following format:

Extended-Save-Area

/ Origin 1111111111111

0 1 20 31

Figure 4-13 lists the fields that are stored in the
extended-save area, their lengths, and their
offsets from the origin of the area.

Length | Byte

Field in Bytes| Offset
F1-pt registers 0-15 128 0
F1-pt-control register 4 128
Reserved (zeros stored) 12 132

Figure 4-13. Extended-Save Area Locations for Store-
Extended-Status-at-Address Order.

The store-extended-status-at-address order is
completed as follows.

¢ If the basic-floating-point-extensions facility is
not installed, the order is not accepted.
Instead, bit 30 (invalid order) of the general
register designated by the R: field of the
SIGNAL PROCESSOR instruction is set to
one, and condition code 1 is set.

e |f the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit
22 (incorrect state) of the general register des-
ignated by the Ri field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

e The save area is tested for the availability of
the designated storage. The absolute address
of the save area is formed by appending nine
zeros to the right of bits 1-22 of the parameter
value. This address is treated as a 31-bit
absolute address regardless of whether the
sending and receiving CPUs are in the 24-bit
or 31-bit addressing mode. The 512-byte
block of storage at this address is accessed.
The access is not subject to protection, and
the associated reference bit may or may not
be set to one. If the block is not available in
the configuration, the order is not accepted by
the addressed CPU, bit 23 (invalid parameter)
of the general register designated by the R:
field of the SIGNAL PROCESSOR instruction
is set to one, and condition code 1 is set.

e The extended save area is tested for the
availability of the designated storage. The

absolute address of the extended save area is
formed by appending 12 zeros to the right of
bits 1-19 of bytes 212-215 of the save area.
This address is treated as a 31-bit absolute
address regardless of whether the sending
and receiving CPUs are in the 24-bit or 31-bit
addressing mode. The 4096-byte block of
storage at this address is accessed. The
access is not subject to protection, and the
associated reference bit may or may not be
set to one. If the block is not available in the
configuration, the order is not accepted by the
addressed CPU, bit 23 (invalid parameter) of
the general register designated by the R1 field
of the SIGNAL PROCESSOR instruction is set
to one, and condition code 1 is set.

e Status of the addressed CPU is stored in the
save area, as indicated in [Figure 4-12 on|
[bage 4-44] and in the extended save area as
indicated in Figure 4-13. Bytes 0-211,
232-255, and 268-287 of the save area and
bytes 144-4095 of the extended save area
remain unchanged.

¢ A serialization and checkpoint-synchronization
function is performed on the addressed CPU
following storing of the status.

Conditions Determining
Response

Conditions Precluding Interpretation of

the Order Code

The following situations preclude the initiation of
the order. The sequence in which the situations
are listed is the order of priority for indicating con-
currently existing situations:

1. The access path to the addressed CPU is
busy because a concurrently executed
SIGNAL PROCESSOR is using the
CPU-signaling-and-response facility. The
CPU which is concurrently executing the
instruction can be any CPU in the configura-
tion other than this CPU, and the CPU
address can be any address, including that of
this CPU or an invalid address. The order is
rejected. Condition code 2 is set.

2. The addressed CPU is not operational; that is,
it is not provided in the installation, it is not in
the configuration, it is in any of certain
customer-engineer test modes, or its power is
off. The order is rejected. Condition code 3

Chapter 4. Control 4-45

is set. This condition cannot arise as a result
of a SIGNAL PROCESSOR by a CPU
addressing itself.

3. One of the following conditions exists at the
addressed CPU:

a. A previously issued start, stop, restart,
stop-and-store-status, set-prefix, or store-
status-at-address order has been
accepted by the addressed CPU, and exe-
cution of the function requested by the
order has not yet been completed.

b. A manual start, stop, restart, or store-
status function has been initiated at the
addressed CPU, and the function has not
yet been completed. This condition
cannot arise as a result of a SIGNAL
PROCESSOR by a CPU addressing itself.

If the currently specified order is sense,
external call, emergency signal, start, stop,
restart, stop and store status, set prefix, or
store status at address, then the order is
rejected, and condition code 2 is set. If the
currently specified order is one of the reset
orders, or an unassigned or not-implemented
order, the order code is interpreted as

described in [‘Status Bits.”

4. One of the following conditions exists at the
addressed CPU:

a. A previously issued initial-CPU-reset or
CPU-reset order has been accepted by
the addressed CPU, and execution of the
function requested by the order has not
yet been completed.

b. A manual-reset function has been initiated
at the addressed CPU, and the function
has not yet been completed. This condi-
tion cannot arise as a result of a SIGNAL
PROCESSOR by a CPU addressing itself.

If the currently specified order is sense,
external call, emergency signal, start, stop,
restart, stop and store status, set prefix, or
store status at address, then the order is
rejected, and condition code 2 is set. If the
currently specified order is one of the reset
orders, or an unassigned or not-implemented
order, either the order is rejected and condi-
tion code 2 is set or the order code is inter-

preted as described in|‘Status Bits.’

When any of the conditions described in items 3
and 4 exists, the addressed CPU is referred to as

4-46 ESA/390 Principles of Operation

“busy.” Busy is not indicated if the addressed CPU
is in the check-stop state or when the operator-
intervening condition exists. A CPU-busy condi-
tion is normally of short duration; however, the
conditions described in item 3 may last indefinitely
because of a string of interruptions. In this situ-
ation, however, the CPU does not appear busy to
any of the reset orders.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and
receiver-check status conditions do not exist at the
addressed CPU, reset orders may be accepted
regardless of whether the addressed CPU has
completed a previously accepted order. This may
cause the previous order to be lost when it is only
partially completed, making unpredictable whether
the results defined for the lost order are obtained.

Status Bits

Various status conditions are defined whereby the
issuing and addressed CPUs can indicate their
responses to the specified order. The status con-
ditions and their bit positions in the general reg-
ister designated by the R: field of the SIGNAL

PROCESSOR instruction are shown in
Figure 4-14.
Bit
Position Status Condition
0 Equipment check
1-21 Unassigned; zeros stored
22 Incorrect state
23 Invalid parameter
24 External-call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Unassigned; zero stored
29 Inoperative
30 Invalid order
31 Receiver check

Figure 4-14. Status Conditions

The status condition assigned to bit position 0 is
generated by the CPU executing SIGNAL
PROCESSOR. The remaining status conditions
are generated by the addressed CPU.

When the equipment-check condition exists, bit O
of the general register designated by the R: field
of the SIGNAL PROCESSOR instruction is set to
one, unassigned bits of the status register are set

to zeros, and the other status bits are unpredict-
able. In this case, condition code 1 is set inde-
pendent of whether the access path to the
addressed CPU is busy and independent of
whether the addressed CPU is not operational, is
busy, or has presented zero status.

When the access path to the addressed CPU is
not busy and the addressed CPU is operational
and does not indicate busy to the currently speci-
fied order, the addressed CPU presents its status
to the issuing CPU. These status bits are of two

types:

1. Status bits 22-27 and 29 indicate the pres-
ence of the corresponding conditions in the
addressed CPU at the time the order code is
received. Except in response to the sense
order, each condition is indicated only when
the condition precludes the successful exe-
cution of the specified order, although invalid
parameter is not necessarily indicated when
any other precluding condition exists. In the
case of sense, all existing status conditions
are indicated; the operator-intervening condi-
tion is indicated if it precludes the execution of
any installed order.

2. Status bits 30 and 31 indicate that the corre-
sponding conditions were detected by the
addressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code
0 is set at the issuing CPU,; if the presented status
is not all zeros, the order has been rejected, the
status is stored at the issuing CPU in the general
register designated by the Ru1 field of the SIGNAL
PROCESSOR instruction, zeros are stored in the
unassigned bit positions of the register, and condi-
tion code 1 is set.

The status conditions are defined as follows:

Equipment Check: This condition exists when
the CPU executing the instruction detects equip-
ment malfunctioning that has affected only the
execution of this instruction and the associated
order. The order code may or may not have been
transmitted and may or may not have been
accepted, and the status bits provided by the
addressed CPU may be in error.

Incorrect State: A set-prefix or store-status-at-
address order has been rejected because the
addressed CPU is not stopped. When applicable,

this status is generated during execution of
SIGNAL PROCESSOR and is indicated concur-
rently with other indications of conditions which
preclude execution of the order.

Invalid Parameter: The parameter value sup-
plied with a set-prefix or store-status-at-address
order designates a storage location which is not
available in the configuration. When applicable,
this status is generated during execution of
SIGNAL PROCESSOR, except that it is not nec-
essarily generated when another condition pre-
cluding execution of the order also exists.

External Call Pending: This condition exists
when an external-call interruption condition is
pending in the addressed CPU because of a pre-
viously issued SIGNAL PROCESSOR order. The
condition exists from the time an external-call
order is accepted until the resultant external inter-
ruption has been completed or a CPU reset
occurs. The condition may be due to the issuing
CPU or another CPU. The condition, when
present, is indicated only in response to sense
and to external call.

Stopped: This condition exists when the
addressed CPU is in the stopped state. The con-
dition, when present, is indicated only in response
to sense. This condition cannot be reported as a
result of a SIGNAL PROCESSOR instruction exe-
cuted by a CPU addressing itself.

Operator Intervening: This condition exists
when the addressed CPU is executing certain
operations initiated from local or remote operator
facilities. The particular manually initiated opera-
tions that cause this condition to be present
depend on the model and on the order specified.
The operator-intervening condition may exist when
the addressed CPU uses reloadable control
storage to perform an order and the required
licensed internal code has not been loaded by the
IML function. The operator-intervening condition,
when present, can be indicated in response to all
orders. Operator intervening is indicated in
response to sense if the condition is present and
precludes the acceptance of any of the installed
orders. The condition may also be indicated in
response to unassigned or uninstalled orders.
This condition cannot arise as a result of a
SIGNAL PROCESSOR instruction executed by a
CPU addressing itself.

Chapter 4. Control 4-47

Check Stop: This condition exists when the
addressed CPU is in the check-stop state. The
condition, when present, is indicated only in
response to sense, external call, emergency
signal, start, stop, restart, set prefix, store status
at address, and stop and store status. The condi-
tion may also be indicated in response to unas-
signed or uninstalled orders. This condition
cannot be reported as a result of a SIGNAL
PROCESSOR instruction executed by a CPU
addressing itself.

Inoperative: This condition indicates that the
execution of the operation specified by the order
code requires the use of a service processor
which is inoperative. The failure of the service
processor may have been previously reported by
a service-processor-damage machine-check con-
dition. The inoperative condition cannot occur for
the sense, external-call, or emergency-signal order
code.

Invalid Order: This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or
uninstalled order code is decoded.

Receiver Check: This condition exists when the
addressed CPU detects malfunctioning of equip-
ment during the communications associated with
the execution of SIGNAL PROCESSOR. When
this condition is indicated, the order has not been
initiated, and, since the malfunction may have
affected the generation of the remaining receiver
status bits, these bits are not necessarily valid. A
machine-check condition may or may not have
been generated at the addressed CPU.

The following chart summarizes which status con-

ditions are presented to the issuing CPU in
response to each order code.

4-48 ESA/390 Principles of Operation

Status Condition

31 Receiver check=
30 Invalid order
29 Inoperative
27 Check stop
26 Operator intervening# ———
25 Stopped
24 External call pending
23 Invalid parameter

22 Incorrect state

Order

VYVYVYYVYYY
Sense OOXXXX00X
External call 0O0X0XX00KX
Emergency signal 0000XX00KX
Start 0000XXX0X
Stop 0000XXX0X
Restart 0000XXXO0KX
Stop and store status 00 0 0 X X X 0 X
Initial CPU reset 0000X0X0KX
CPU reset 0000X0X0KX
Set prefix XX00XXX0X
Store status at addr. X X0 0 X X X 0 X
Unassigned order 0000XEXTI1X

Explanation:

The current state of the operator-intervening
condition may depend on the order code that
is being interpreted.

= If a one is presented in the receiver-check bit
position, the values presented in the other bit
positions are not necessarily valid.

0 A zero is presented in this bit position regard-
less of the current state of this condition.

1 A oneis presented in this bit position.

X A zero or a one is presented in this bit posi-
tion, reflecting the current state of the corre-
sponding condition.

E Either a zero or the current state of the corre-
sponding condition is indicated.

If the presented status bits are all zeros, the order
has been accepted, and the issuing CPU sets
condition code 0. If one or more ones are pre-
sented, the order has been rejected, and the
issuing CPU stores the status in the general reg-
ister designated by the R: field of the SIGNAL
PROCESSOR instruction and sets condition code
1.

Programming Notes:
1. All SIGNAL PROCESSOR orders can be

addressed to this same CPU. The following
are examples of functions obtained by a CPU
addressing SIGNAL PROCESSOR to itself:

a. Sense indicates whether an external-call
condition is pending.

b. External call and emergency signal cause
the corresponding interruption conditions
to be generated. External call can be
rejected because of a previously gener-
ated external-call condition.

c. Start sets condition code 0 and has no
other effect.

d. Stop causes the CPU to set condition
code 0, take pending interruptions for
which it is enabled, and enter the stopped
state.

e. Restart provides a means to store the
current PSW.

f. Stop and store status causes the machine
to stop and store all current status.

2. Two CPUs can simultaneously execute

SIGNAL PROCESSOR, with each CPU
addressing the other. When this occurs, one
CPU, but not both, can find the access path
busy because of the transmission of the order
code or status bits associated with SIGNAL
PROCESSOR that is being executed by the
other CPU. Alternatively, both CPUs can find
the access path available and transmit the
order codes to each other. In particular, two
CPUs can simultaneously stop, restart, or
reset each other.

. To obtain status from another CPU which is in

the check-stop state by means of the store-
status-at-address order, a CPU reset opera-
tion should first be used to bring the CPU to
the stopped state. This reset order does not
alter the status, and, depending on the nature
of the malfunction, provides the best chance
of establishing conditions in the addressed
CPU which allow status to be obtained.

Chapter 4. Control 4-49

4-50 ESA/390 Principles of Operation

Chapter 5. Program Execution

Instructions
Operands
Instruction Formats

Register Operands
Immediate Operands
Storage Operands

Address Generation
Bimodal Addressing
Sequential Instruction-Address Generation
Operand-Address Generation

Formation of the Intermediate Value
Formation of the Operand Address . . .
Branch-Address Generation
Formation of the Intermediate Value
Formation of the Branch Address

Instruction Execution and Sequencing
Decision Making
Loop Control
Subroutine Linkage without the Linkage

Stack
Interruptions
Types of Instruction Ending

Completion
Suppression
Nullification
Termination
Interruptible Instructions
Point of Interruption
Unit of Operation
Execution of Interruptible Instructions .
Condition-Code Alternative to
Interruptibility
Exceptions to Nullification and
Suppression
Storage Change and Restoration for
DAT-Associated Access Exceptions
Modification of DAT-Table Entries . . .
Trial Execution for Editing Instructions
and Translate Instruction
Authorization Mechanisms
Mode Requirements
Extraction-Authority Control
PSW-Key Mask
Secondary-Space Control
Subsystem-Linkage Control
ASN-Translation Control
Authorization Index
Program-Call-Fast Control
Access-Register and Linkage-Stack
Mechanisms

5-16

5-18
5-19

PC-Number Translation
PC-Number Translation Control
Control Register 0
Control Register 5
PC-Number Translation Tables
Linkage-Table Entries
Entry-Table Entries
PC-Number-Translation Process
Obtaining the Linkage-Table
Designation
Linkage-Table Lookup
Entry-Table Lookup
Recognition of Exceptions during
PC-Number Translation
Home Address Space
Access-Register Introduction
Summary
Access-Register Functions
Access-Register-Specified Address
Spaces
Access-Register Instructions
Access-Register Translation
Access-Register-Translation Control
Address-Space-Function Control
Control Register 2
Control Register 5
Control Register 8
Access Registers
Access-Register-Translation Tables
Dispatchable-Unit-Control Table and
Access-List Designations
Access-List Entries
Extended ASN-Second-Table Entries
Access-Register-Translation Process .
Selecting the Access-List-Entry Token .
Obtaining the Primary or Secondary
Segment-Table Designation
Checking the First Byte of the ALET
Obtaining the Effective Access-List
Designation
Access-List Lookup
Locating the ASN-Second-Table Entry .
Authorizing the Use of the Access-List
Entry
Checking for Access-List-Controlled
Protection
Obtaining the Segment-Table
Designation from the
ASN-Second-Table Entry

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999

Subspace Groups

Linkage-Stack Introduction

Extended Entry-Table Entries
Linkage-Stack Operations

Recognition of Exceptions during
Access-Register Translation
ART-Lookaside Buffer
ALB Structure

Formation of ALB Entries
Modification of ART Tables

Subspace-Group Tables
Subspace-Group Dispatchable-Unit
Control Table
Subspace-Group ASN-Second-Table
Entries
Subspace-Replacement Operations

Summary

Linkage-Stack Functions
Transferring Program Control
Branching Using the Linkage Stack
Adding and Retrieving Information
Testing Authorization
Program-Problem Analysis

Linkage-Stack-Operations Control
Control Register0
Control Register 15

Linkage Stack
Entry Descriptors
Header Entries
Trailer Entries
State Entries

Stacking Process

Locating Space for a New Entry .
Forming the New Entry
Updating the Current Entry

Updating Control Register 15

5-51
5-51
5-51
5-51
5-52
5-52
5-52

5-53

Recognition of Exceptions during the
Stacking Process
Unstacking Process
Locating the Current Entry and
Processing a Header Entry
Checking for a State Entry
Restoring Information
Updating the Preceding Entry
Updating Control Register 15
Recognition of Exceptions during the
Unstacking Process
Sequence of Storage References
Conceptual Sequence
Overlapped Operation of Instruction
Execution
Divisible Instruction Execution

Interlocks for Virtual-Storage References .

Interlocks between Instructions
Interlocks within a Single Instruction
Instruction Fetching
ART-Table and DAT-Table Fetches
Storage-Key Accesses
Storage-Operand References
Storage-Operand Fetch References
Storage-Operand Store References
Storage-Operand Update References
Storage-Operand Consistency
Single-Access References
Multiple-Access References
Block-Concurrent References
Consistency Specification
Relation between Operand Accesses

Serialization

Other Storage References

CPU Serialization
Channel-Program Serialization

Normally, operation of the CPU is controlled by
instructions in storage that are executed sequen-
tially, one at a time, left to right in an ascending
sequence of storage addresses. A change in the
sequential operation may be caused by branching,
LOAD PSW, interruptions, SIGNAL PROCESSOR

orders, or manual intervention.

5-2 ESA/390 Principles of Operation

Instructions

Each instruction consists of two major parts:

e An operation code (op code), which specifies

the operation to be performed

e The designation of the operands that partic-

ipate

Operands

Operands can be grouped in three classes: oper-
ands located in registers, immediate operands,
and operands in storage. Operands may be either
explicitly or implicitly designated.

Register operands can be located in general,
floating-point, access, or control registers, with the
type of register identified by the op code. The
register containing the operand is specified by
identifying the register in a four-bit field, called the
R field, in the instruction. For some instructions,
an operand is located in an implicitly designated
register, the register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit or 16-bit field con-
taining the immediate operand is called the | field.

Operands in storage may have an implied length;
be specified by a bit mask; be specified by a
four-bit or eight-bit length specification, called the
L field, in the instruction; or have a length speci-
fied by the contents of a general register. The
addresses of operands in storage are specified by
means of a format that uses the contents of a
general register as part of the address. This
makes it possible to:

1. Specify a complete address by using an
abbreviated notation

2. Perform address manipulation using
instructions which employ general registers for
operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independent of the location of data
areas by directly using addresses received
from other programs

The address used to refer to storage either is con-
tained in a register designated by the R field in the
instruction or is calculated from a base address,
index, and displacement, specified by the B, X,
and D fields, respectively, in the instruction.

When the CPU is in the access-register mode, a B
or R field may designate an access register in
addition to being used to specify an address.

To describe the execution of instructions, oper-
ands are designated as first and second operands
and, in some cases, third operands.

In general, two operands participate in an instruc-
tion execution, and the result replaces the first
operand. However, CONVERT TO DECIMAL,
TEST BLOCK, and instructions with “store” in the
instruction name (other than STORE THEN AND
SYSTEM MASK and STORE THEN OR SYSTEM
MASK) use the second-operand address to desig-
nate a location in which to store. TEST AND
SET, COMPARE AND SWAP, and COMPARE
DOUBLE AND SWAP may perform an update on
the second operand. Except when otherwise
stated, the contents of all registers and storage
locations participating in the addressing or exe-
cution part of an operation remain unchanged.

Instruction Formats

An instruction is one, two, or three halfwords in
length and must be located in storage on a
halfword boundary. Each instruction is in one of
14 basic formats: E, RR, RRE, RRF, RX, RXE,
RXF, RS, RSI, RI, SI, S, SSE, and SS, with three
variations of RRF and four of SS. (See
[Figure 5-1 on page 5-4)

Chapter 5. Program Execution 5-3

E Format
Op Code
0 15
RR Format
Op Code | R1 | Rz
0 8 12 15
RRE Format
Op Code /1111111 R1 | Rz
0 16 24 28 31
RRF Format
Op Code Ri [////] Rs | Rz
0 16 20 24 28 31
Op Code Ms |////| R1 | Rz
0 16 20 24 28 31
Op Code R3 | Ma | R1 | Rz
0 16 20 24 28 31
RX Format
Op Code | R1 | X2 | B2 D2
0 8 12 16 20 31
RXE Format /
Op Code | R1 | X2 | B2 Dé ////1///|0p Code
0 8 12 16 20 ! 32 40 47
RXF Format
Op Code | Rs | Xz | Bz éz Ri |////|0p Code
0 8 12 16 20/ 32 36 40 47
RS Format
Op Code | R1 | Rs | B2 D2
0 8 12 16 20 31

Figure 5-1 (Part 1 of 2). Basic Instruction Formats

5-4 ESA/390 Principles of Operation

RSI Format

Op Code | R1 | Rs Iz
0 8 12 16 31
RI Format
Op Code | R:1 |OpCd I2
0 8 12 16 31
ST Format
Op Code I2 B1 D1
0 8 16 20 31
S Format
Op Code B2 D2
0 16 20 31
SS Format
/ /
Op Code L B1 D1 B2 D2
/ /
0 8 16 20 32 36 47
/
Op Code | L1 | L2 | B D1 B2 D2
/ /
0 8 12 16 20 32 36 47
/ /
Op Code | R1 | Rs | B D1 B2 D2
/ /
0 8 12 16 20 32 36 47
/ /
Op Code | R1 | Rs | B2 D2 Ba Da
/ /
0 8 12 16 20 32 36 47
SSE Format
/ /
Op Code B1 D1 B2 D2
/ /
0 16 20 32 36 47

Figure 5-1 (Part 2 of 2). Basic Instruction Formats

Some instructions contain fields that vary slightly
from the basic format, and in some instructions
the operation performed does not follow the
general rules stated in this section. All of these
exceptions are explicitly identified in the individual
instruction descriptions

Those instruction formats which are unique to
instructions associated with the vector facility are

described in the publication IBM Enterprise
Systems Architecture/390 Vector Operations,
SA22-7207.

The format names indicate, in general terms, the
classes of operands which participate in the oper-
ation:

e E denotes an operation using implied oper-
ands and having an extended op-code field.

¢ RR denotes a register-and-register operation.

* RRE denotes a register-and-register operation
having an extended op-code field.

¢ RRF denotes a register-and-register operation
having an extended op-code field and an addi-
tional R field, M field, or both.

¢ RX denotes a register-and-indexed-storage
operation.

e RXE denotes a register-and-indexed-storage
operation having an extended op-code field.

¢ RXF denotes a register-and-indexed-storage
operation having an extended op-code field
and an additonal R field.

¢ RS denotes a register-and-storage operation.

¢ RSI denotes a register-and-immediate opera-
tion.

¢ RI denotes a register-and-immediate operation
having an extended op-code field.

e S| denotes a storage-and-immediate opera-
tion.

e S denotes an operation using an implied
operand and storage.

e SS denotes a storage-and-storage operation.

e SSE denotes a storage-and-storage operation
having an extended op-code field.

In the RR, RX, RS, RSI, SI, and SS formats, the
first byte of an instruction contains the op code.
In the E, RRE, RRF, S, and SSE formats, the first
two bytes of an instruction contain the op code,
except that for some instructions in the S format,
all or a portion of the second byte is ignored. In
the RI format, the op code is in the first byte and
bits 12-15 of an instruction. In the RXE and RXF
formats, the op code is in the first byte and bits
40-47 of an instruction.

The first two bits of the first or only byte of the op
code specify the length and format of the instruc-
tion, as follows:

Bit Instruction

Positions| Length (in Instruction

0-1 Halfwords) Format

00 One E/RR

01 Two RX

10 Two RRE/RRF/RX/RS/RSI/RI/
SI/S

11 Three RXE/RXF/SS/SSE

In the format illustration for each individual instruc-
tion description, the op-code field or fields show
the op code as hexadecimal digits within single
guotes. The hexadecimal representation uses 0-9
for the binary codes 0000-1001 and A-F for the
binary codes 1010-1111.

The remaining fields in the format illustration for
each instruction are designated by code names,
consisting of a letter and possibly a subscript
number. The subscript number denotes the
operand to which the field applies.

Register Operands

In the RR, RRE, RRF, RX, RXE, RXF, RS, RSI,
and RI formats, the contents of the register desig-
nated by the Ru1 field are called the first operand.
The register containing the first operand is some-
times referred to as the “first-operand location,”
and sometimes as “register R1.” In the RR RRE,
and RRF formats, the Rz field designates the reg-
ister containing the second operand, and the R:
field may designate the same register as Ri. In
the RRF, RXF, RS, and RSI formats, the use of
the Rs field depends on the instruction.

The R field designates a general or access reg-
ister in the general instructions, a general register
in the control instructions, and a floating-point reg-
ister in the floating-point instructions. However, in
the instructions EXTRACT STACKED REGIS-
TERS and LOAD ADDRESS EXTENDED, the R
field designates both a general register and an
access register, and, in the instructions LOAD
CONTROL and STORE CONTROL, the R field
designates a control register. (This paragraph
refers only to register operands, not to the use of
access registers in addressing storage operands.)

Unless otherwise indicated in the individual
instruction description, the register operand is one
register in length (32 bits for a general, access, or
control register and 64 bits for a floating-point reg-

Chapter 5. Program Execution 5-5

ister), and the second operand is the same length
as the first.

Immediate Operands

In the SI format, the contents of the eight-bit
immediate-data field, the |2 field of the instruction,
are used directly as the second operand. The B:
and D1 fields specify the first operand, which is
one byte in length.

In the RI format for the instructions ADD
HALFWORD IMMEDIATE, COMPARE
HALFWORD IMMEDIATE, LOAD HALFWORD

IMMEDIATE, and MULTIPLY HALFWORD IMME-
DIATE, the contents of the 16-bit 12 field of the
instruction are used directly as a signed binary
integer; and for the instructions TEST UNDER
MASK HIGH and TEST UNDER MASK LOW, the
contents are used as a mask. The R field speci-
fies the first operand, which is one word in length.

For the relative-branch instructions, which are in
the RI and RSI formats, the contents of the 16-bit
I2 field are used as a signed binary integer desig-
nating a number of halfwords. This number, when
added to the address of the branch instruction,
specifies the branch address.

Storage Operands

The use of B and R fields to designate access
registers to refer to storage operands is described
in ['Access-Register-Specified Address Spaces” on|

In the SI,; SS, and SSE formats, the contents of
the general register designated by the B: field are
added to the contents of the D1 field to form the
first-operand address. In the S, RS, SS, and SSE
formats, the contents of the general register desig-
nated by the Bz field are added to the contents of
the D2 field to form the second-operand address.
In the RX format, the contents of the general reg-
isters designated by the Xz and B2 fields are
added to the contents of the D2 field to form the
second-operand address.

5-6 ESA/390 Principles of Operation

—_—— — —

In the SS format with a single, eight-bit length
field, L specifies the number of additional operand
bytes to the right of the byte designated by the
first-operand address. Therefore, the length in
bytes of the first operand is 1-256, corresponding
to a length code in L of 0-255. Storage results
replace the first operand and are never stored
outside the field specified by the address and
length. In this format, the second operand has the
same length as the first operand, except for the
following instructions: EDIT, EDIT AND MARK,
TRANSLATE, and TRANSLATE AND TEST.

In the SS format, with two length fields given, L1
specifies the number of additional operand bytes
to the right of the byte designated by the first-
operand address. Therefore, the length in bytes
of the first operand is 1-16, corresponding to a
length code in L1 of 0-15. Similarly, L2 specifies
the number of additional operand bytes to the right
of the location designated by the second-operand
address. Results replace the first operand and
are never stored outside the field specified by the
address and length. If the first operand is longer
than the second, the second operand is extended
on the left with zeros up to the length of the first
operand. This extension does not modify the
second operand in storage.

In the SS format with two R fields, the contents of
the general register specified by the R: field are a
32-bit unsigned value called the true length. The
operands are of the same length, called the effec-
tive length. The effective length is equal to the
true length or 256, whichever is less. The
instructions using this format, which are MOVE TO
PRIMARY, MOVE TO SECONDARY, and MOVE
WITH KEY, set the condition code to facilitate pro-
gramming a loop to move the total number of
bytes specified by the true length. The SS format
with two R fields is also used to specify one or
two registers and one or two storage operands by
the PERFORM LOCKED OPERATION instruction.

Address Generation

Bimodal Addressing

Bit 32 of the current PSW is the addressing-mode
bit. This bit controls the size of the effective
address produced by address generation. When
bit 32 of the current PSW is zero, the CPU is in
the 24-bit addressing mode, and 24-bit instruction
and operand effective addresses are generated.
When bit 32 of the current PSW is one, the CPU
is in the 31-bit addressing mode, and 31-bit
instruction and operand effective addresses are
generated.

Execution of instructions by the CPU involves gen-
eration of the addresses of instructions and oper-
ands. This section describes address generation
as it applies to most instructions. In some
instructions, the operation performed does not
follow the general rules stated in this section. All
of these exceptions are explicitly identified in the
individual instruction descriptions.

Sequential Instruction-Address
Generation

When an instruction is fetched from the location
designated by the current PSW, the instruction
address is increased by the number of bytes in
the instruction, and the instruction is executed.
The same steps are then repeated by using the
new value of the instruction address to fetch the
next instruction in the sequence.

In the 24-bit addressing mode, instruction
addresses wrap around, with the halfword at
instruction address 224 - 2 being followed by the
halfword at instruction address 0. Thus, in the
24-bit addressing mode, any carry out of PSW bit
position 40, as a result of updating the instruction
address, is lost.

In the 31-bit addressing mode, instruction
addresses wrap around, with the halfword at
instruction address 231! - 2 being followed by the
halfword at instruction address 0. Thus, in the
31-bit addressing mode, any carry out of PSW bit
position 33, as a result of updating the instruction
address, is lost.

Operand-Address Generation

Formation of the Intermediate Value

An operand address that refers to storage is
derived from an intermediate value, which either is
contained in a register designated by an R field in
the instruction or is calculated from the sum of
three binary numbers: base address, index, and
displacement.

The base address (B) is a 32-bit nhumber con-
tained in a general register specified by the
program in a four-bit field, called the B field, in the
instruction. Base addresses can be used as a
means of independently addressing each program
and data area. In array-type calculations, it can
designate the location of an array, and, in record-
type processing, it can identify the record. The
base address provides for addressing the entire
storage. The base address may also be used for
indexing.

The index (X) is a 32-bit number contained in a
general register designated by the program in a
four-bit field, called the X field, in the instruction.
It is included only in the address specified by the
RX-format instructions. The RX-format
instructions permit double indexing; that is, the
index can be used to provide the address of an
element within an array.

The displacement (D) is a 12-bit number con-
tained in a field, called the D field, in the instruc-
tion. The displacement provides for relative
addressing of up to 4,095 bytes beyond the
location designated by the base address. In
array-type calculations, the displacement can be
used to specify one of many items associated with
an element. In the processing of records, the dis-
placement can be used to identify items within a
record.

In forming the intermediate sum, the base address
and index are treated as 32-bit binary integers.
The displacement is similarly treated as a 12-bit
unsigned binary integer, and 20 zero bits are
appended on the left. The three are added as
32-bit binary numbers, ignoring overflow. The
sum is always 32 bits long and is used as an
intermediate value to form the generated address.
The bits of the intermediate value are numbered
0-31.

Chapter 5. Program Execution 5-7

A zero in any of the Bi1, Bz, or Xz fields indicates
the absence of the corresponding address compo-
nent. For the absent component, a zero is used
in forming the intermediate sum, regardless of the
contents of general register 0. A displacement of
zero has no special significance.

When an instruction description specifies that the
contents of a general register designated by an R
field are used to address an operand in storage,
the register contents are used as the 32-bit inter-
mediate value.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed before registers, if any, are changed by
the operation.

Unless otherwise indicated in an individual instruc-
tion definition, the generated operand address
designates the leftmost byte of an operand in
storage.

Formation of the Operand Address

The generated operand address is always 31 bits
long, and the bits are numbered 1-31. In some
portions of this document, the generated address
may be referred to as being 32 bits long, with the
bits numbered 0-31. Bit 0 of the generated
address is always forced to be zero. The manner
in which the generated address is obtained from
the intermediate value depends on the current
addressing mode. In the 24-bit addressing mode,
bits 0-7 of the intermediate value are ignored, bits
0-7 of the generated address are forced to be
zeros, and bits 8-31 of the intermediate value
become bits 8-31 of the generated address. In
the 31-bit addressing mode, bit 0 of the interme-
diate value is ignored, bit 0 of the generated
address is forced to be zero, and bits 1-31 of the
intermediate value become bits 1-31 of the gener-
ated address.

Programming Note: Negative values may be
used in index and base-address registers. Bit O of
these values is always ignored, and, in the 24-bit
addressing mode, bits 1-7 of these values are also
ignored.

5-8 ESA/390 Principles of Operation

Branch-Address Generation

Formation of the Intermediate Value

For branch instructions, the address of the next
instruction to be executed when the branch is
taken is called the branch address. Depending on
the branch instruction, the instruction format may
be RI, RR, RS, RSI, or RX.

In the RS and RX formats, the branch address is
specified by a base address, a displacement, and,
for RX, an index. In the RS and RX formats, the
generation of the intermediate value follows the
same rules as for the generation of the operand-
address intermediate value.

In the RR format, the contents of the general reg-
ister designated by the Rz field are used as the
intermediate value from which the branch address
is formed. General register 0 cannot be desig-
nated as containing a branch address. A value of
zero in the Rz field causes the instruction to be
executed without branching.

The relative-branch instructions are in the RI and
RSI formats. In the Rl and RSI formats for the
relative-branch instructions, the contents of the Iz
field are treated as a 16-bit signed binary integer
designating a number of halfwords. The branch
address is the number of halfwords designated by
the Iz field added to the address of the relative-
branch instruction.

The 32-bit intermediate value for a relative branch
instruction in the RI or RSI format is the sum of
two addends, with overflow ignored. The first
addend is the contents of the |2 field with one zero
bit appended on the right and 15 bits equal to the
sign bit of the contents appended on the left. The
second addend is the 31-bit address of the branch
instruction with one zero bit appended on the left.
The address of the branch instruction is the
instruction address in the PSW before that
address is updated to address the next sequential
instruction, or it is the address of the target of the
EXECUTE instruction if EXECUTE is used. If
EXECUTE is used in the 24-bit addressing mode,
the address of the branch instruction is the target
address with seven zeros appended on the left.

Formation of the Branch Address

The branch address is always 31 bits long, with
the bits numbered 1-31. The branch address
replaces bits 33-63 of the current PSW. The
manner in which the branch address is obtained
from the intermediate value depends on the
addressing mode. For those branch instructions
which change the addressing mode, the new
addressing mode is used. In the 24-bit
addressing mode, bits 0-7 of the intermediate
value are ignored, bits 1-7 of the branch address
are made zeros, and bits 8-31 of the intermediate
value become bits 8-31 of the branch address. In
the 31-bit addressing mode, bit 0 of the interme-
diate value is ignored, and bits 1-31 of the inter-
mediate value become bits 1-31 of the branch
address.

For several branch instructions, branching
depends on satisfying a specified condition.
When the condition is not satisfied, the branch is
not taken, normal sequential instruction execution
continues, and the branch address is not used.
When a branch is taken, bits 1-31 of the branch
address replace bits 33-63 of the current PSW.
The branch address is not used to access storage
as part of the branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of
the instruction at the branch location are not
recognized as part of the branch operation but
instead are recognized as exceptions associated
with the execution of the instruction at the branch
location.

A branch instruction, such as BRANCH AND
LINK, can designate the same general register for
branch-address computation and as the location of
an operand. Branch-address computation is com-
pleted before the remainder of the operation is
performed.

Instruction Execution and
Sequencing

The program-status word (PSW), described in
[Chapter 4, “Control” contains information required
for proper program execution. The PSW is used
to control instruction sequencing and to hold and
indicate the status of the CPU in relation to the
program currently being executed. The active or
controlling PSW is called the current PSW.

Branch instructions perform the functions of deci-
sion making, loop control, and subroutine linkage.
A branch instruction affects instruction sequencing
by introducing a new instruction address into the
current PSW. The relative-branch instructions
allow branching to a location at an offset of up to
plus 64K - 2 bytes or minus 64K bytes relative to
the location of the branch instruction, without the
use of a base register.

Decision Making

Facilities for decision making are provided by
BRANCH ON CONDITION and BRANCH RELA-
TIVE ON CONDITION. These instructions inspect
a condition code that reflects the result of a
majority of the arithmetic, logical, and 1/O opera-
tions. The condition code, which consists of two
bits, provides for four possible condition-code set-
tings: 0,1, 2, and 3.

The specific meaning of any setting depends on
the operation that sets the condition code. For
example, the condition code reflects such condi-
tions as zero, nonzero, first operand high, equal,
overflow, and subchannel busy. Once set, the
condition code remains unchanged until modified
by an instruction that causes a different condition
code to be set. See|Appendix C, “Condition-Code|
[Settings” on page C-1| for a summary of the
instructions which set the condition code.

Loop Control

Loop control can be performed by the use of
BRANCH ON CONDITION and BRANCH RELA-
TIVE ON CONDITION. to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arith-
metic and tests, BRANCH ON COUNT, BRANCH
ON INDEX HIGH, and BRANCH ON INDEX LOW
OR EQUAL are provided, and relative-branch
equivalents of these instructions are also provided.
These branches, being specialized, provide
increased performance for these tasks.

Subroutine Linkage without the
Linkage Stack

This section describes only the methods for sub-
routine linkage that do not use the linkage stack.
For the linkage extensions provided by the linkage

stack, see [Linkage-Stack _Introduction” _on]
[bage 5-571 (Those extensions include a different

Chapter 5. Program Execution 5-9

method of operation of the PROGRAM CALL
instruction and also the BRANCH AND STACK,
PROGRAM CALL FAST, and PROGRAM
RETURN instructions.)

Subroutine linkage is provided by the BRANCH
AND LINK, BRANCH AND SAVE and BRANCH
RELATIVE AND SAVE instructions, which permit
not only the introduction of a new instruction
address but also the preservation of the return
address and associated information. Instructions
are also provided which set and save the
addressing-mode bit, PSW bit 32. These
instructions provide the facility for subroutine
linkage between programs using the 24-bit and
31-bit addressing modes. Linkage between a
problem-state program and the supervisor or mon-
itoring program is provided by means of the
SUPERVISOR CALL and MONITOR CALL
instructions.

The instructions PROGRAM CALL and
PROGRAM TRANSFER provide the facility for
linkage between programs of different authority
and in different address spaces. PROGRAM
CALL permits linkage to a number of preassigned
programs that may be in either the problem or the
supervisor state and may be in either the same
address space or an address space different from
that of the caller. It permits a change of the
addressing mode, and it permits an increase of
PSW-key-mask authority, which authorizes the
execution of the SET PSW KEY FROM
ADDRESS instruction and also other functions. In
general, PROGRAM CALL is used to transfer
control to a program of higher authority.
PROGRAM TRANSFER permits a change of the
instruction address, addressing mode, and
address space. PROGRAM TRANSFER also
permits a reduction of PSW-key-mask authority
and a change from the supervisor to the problem
state. In general, it is used to transfer control
from one program to another of equal or lower
authority.

When a calling linkage is to increase authority, the
calling linkage can be performed by PROGRAM
CALL and the return linkage by PROGRAM
TRANSFER. Alternatively, when the calling
linkage is to decrease authority, the calling linkage
can be performed by PROGRAM TRANSFER and
the return linkage by PROGRAM CALL.

5-10 ESA/390 Principles of Operation

The operation of PROGRAM CALL is controlled
by means of an entry-table entry, which is located
as part of a table-lookup process during the exe-
cution of the instruction. The entry-table entry
specifies either a basic (nonstacking) operation or
the stacking operation described in ['Linkage-Stack]
[Introduction” on page 5-57| The instruction
causes the primary address space to be changed
only when the ASN in the entry-table entry is
nonzero. When the primary address space is
changed, the operation is called PROGRAM CALL
with space switching (PC-ss). When the primary
address space is not changed, the operation is
called PROGRAM CALL to -current primary
(PC-cp).

PROGRAM TRANSFER specifies the new
addressing mode and the address space which is
to become the new primary address space. When
the primary address space is changed, the opera-
tion is called PROGRAM TRANSFER with space
switching (PT-ss). When the primary address
space is not changed, the operation is called
PROGRAM TRANSFER to current primary
(PT-cp).

The BRANCH AND SET AUTHORITY instruction
is available when the branch-and-set-authority
facility is installed. BRANCH AND SET
AUTHORITY can improve performance by
replacing a PT-cp instruction used to perform a
calling linkage in which PSW-key-mask authority is
reduced, and by replacing a PC-cp instruction
used to perform the associated return linkage in
which PSW-key-mask authority is restored.
BRANCH AND SET AUTHORITY also permits
changes between the supervisor and problem
states, and it can replace SET PSW KEY FROM
ADDRESS by changing the PSW key during the
linkage. The calling-linkage operation is called
BRANCH AND SET AUTHORITY in the base-
authority state (BSA-ba), and the return-linkage
operation is called BRANCH AND SET
AUTHORITY in the reduced-authority state
(BSA-ra).

The BRANCH IN SUBSPACE GROUP instruction
is available when the subspace-group facility is
installed. The instruction allows linkage within a
group of address spaces called a subspace group,
where one address space in the group is called
the base space and the others are called sub-
spaces. It is intended that each subspace contain
a different subset of the storage in the base

space, that the base space and each subspace
contain a subsystem control program, such as
CICS, and application programs, and that each
subspace contain the data for a single transaction
being processed under the subsystem control
program. The placement of the data for each
transaction in a different subspace prevents a
program that is being executed to process one
particular transaction from erroneously damaging
the data of other transactions. It is intended that
the primary address space be the base space
when the control program is being executed, and
that it be the subspace for a transaction when an
application program is being executed to process
that transaction. BRANCH IN SUBSPACE
GROUP changes not only the instruction address
in the PSW but also the primary segment-table
designation in control register 1. BRANCH IN
SUBSPACE GROUP does not change the primary
ASN in control register 4 or the
primary-ASN-second-table-entry origin in control
register 5, and, therefore, the base space and the
subspaces all are associated with the same ASN,
and the programs in those address spaces all are
of equal authority.

Although a subspace is intended to be a subset of
the base space as described above, the
subspace-group facility does not require this, and
the facility may be useful in ways other than as
described above.

BRANCH IN SUBSPACE GROUP uses an
access-list-entry token (ALET) in an access reg-
ister as an identifier of the address space that is
to receive control. The instruction saves the
updated instruction address to permit a return
linkage, but it does not save an identifier of the

—e— e e e e — —

address space from which control was transferred.
However, an ALET equal to 00000000 hex, called
ALET 0, can be used to return from a subspace to
the base space, and an ALET equal to 00000001
hex, called ALET 1, can be used to return from
the base space to the subspace that last had
control.

The linkage instructions provided and the func-
tions performed by each are summarized in
[Figure 5-2 on page 5-12|

The RESUME PROGRAM instruction is available
when the resume-program facility is installed.
RESUME PROGRAM is intended for use by a
problem-state interruption-handling program to
return to the interrupted program. The
interruption-handling program can use LOAD
ACCESS MULTIPLE and LOAD MULTIPLE
instructions to restore the contents of the inter-
rupted program's access and general registers
from a save area, except for the contents of one
access-and-general register pair. The interruption-
handling program then can use RESUME
PROGRAM to restore the contents of certain PSW
fields, including the instruction address, and also
the contents of the remaining access-and-general
pair from the save area, with that pair first being
used by RESUME PROGRAM to address the
save area.

The TRAP instruction is available when the trap
facility is installed. TRAP (TRAP2, TRAP4) can
overlay instructions in an application program and
give control to a trap program for performing
fix-ups of data used by the application program.
The RESUME PROGRAM instruction can be used
to return control from the trap program to the
application program.

5-11

Chapter 5. Program Execution

—_—

Instruction Addressing Problem PASN
Address Mode State CR4 PSW-Key
PSW Bits 33-63 PSW Bit 32 PSW Bit 15 Bits 16-31 Mask
Changed
Instruction|Format| Save Set Save Set Save Set Save Set in CR3 Trace
BALR= RR Yes Rz21 AM - - - - - - Rz21
BAL* RX Yes Yes AM - - - - - - -
BASR RR Yes Rz Yes - - - - - - Rz21
BAS RX Yes Yes Yes - - - - - - -
BASSM RR Yes Rz Yes Rz - - - - - Rz21
BRAS RI Yes Yes Yes - - - - - - -
BSA-ba RRE Yes Yes Yes Yes Yes Yes4 - - "AND" R13| Yes
BSA-ra RRE Rit? Yes Rit? Yes - Yes - - Yes Yes
BSG RRE Yes Yes Yes Yes - - - -3 - Yes
BSM RR - R21 R1l R21 - - - - - -
MC#2 SI Yes Yes Yes Yes Yes Yes - - - -
PC-cp S Yes Yes Yes Yes Yes Yes - - "OR" EKM Yes
PC-ss S Yes Yes Yes Yes Yes Yes Yes Yes |["OR" EKM Yes
PT-cp RRE - R2 - R2 - Rax= - - "AND" R1 Yes
PT-ss RRE - Rz - Rz - Rax= - Yes |["AND" R: Yes
RP S - Yes - Yes - - - - - Yes
Svc2 RR Yes Yes Yes Yes Yes Yes - - - -
TRAP2 E Yes Yes Yes Yes Yes - - - - Yes
TRAP4 S Yes Yes Yes Yes Yes - - - - Yes
Explanation:
- No
* In the 24-bit addressing mode, the instruction-Tength code, condition code, program mask,
and 24-bit instruction address are saved, and the 24-bit instruction address is set; in
the 31-bit addressing mode, the addressing mode and the 31-bit instruction address are
saved, and the 31-bit instruction address is set.
** A change from the supervisor to the problem state is allowed; a privileged-operation excep-
tion is recognized when a change from the problem to the supervisor state is specified.
Monitor-mask bits provide a means of disallowing linkage, or enabling linkage, for selected
classes of events.
1 The action takes place only if the associated R field in the instruction is nonzero.
2 MC and SVC, as part of the interruption, save the entire current PSW and Toad a new PSW.
3 The primary segment-table designation is set even though the PASN is not set.

Figure 5-2 (Part 1 of 2). Summary of Linkage Instructions without the Linkage Stack

5-12 ESA/390 Principles of Operation

Explanation (Continued):
4 The problem state is set.

5 The PSW key also is set from general register Ri.

AM Saved only if the 31-bit addressing mode is specified.

Figure 5-2 (Part 2 of 2). Summary of Linkage Instructions without the Linkage Stack

Programming Note: This section describes the
linkage instructions that were included in 370-XA
and carried forward to ESA/370 and ESA/390. To
give the reader a better understanding of the utility
and intended usage of these linkage instructions,
the following paragraphs in this note describe
various program linkages and conventions and the
use of the linkage instructions in these situations.

BRANCH RELATIVE AND SAVE, which is not
mentioned in the remainder of this section, may
be used in place of BRANCH AND SAVE.

The linkage instructions are provided to permit
System/370 programs to operate with no modifica-
tion or only slight modification on ESA/390
systems and also to provide additional function for
those programs which are designed to take
advantage of the 31-bit addressing of ESA/390.
The instructions provide the capability for both old
and new programs to coexist in storage and to
communicate with each other. It is assumed that
old, unmodified programs operate in the 24-bit
addressing mode and call, or directly communi-
cate with, other programs operating in the 24-bit
addressing mode only. Modified programs
normally operate in the 24-bit addressing mode
but may call programs which operate in either the
24-bit or 31-bit addressing mode. New programs
may be written to operate in either the 24-bit or
31-bit addressing mode, and, in some cases, a
program may be written such that it can be
invoked in either mode.

SUPERVISOR CALL is provided for compatibility
purposes and also because it provides the sim-
plest mechanism to call a program which operates
in the supervisor state. It has the advantage over
PROGRAM CALL that no general registers are
disturbed, that only two bytes in storage are
required in line, and that a complete change of
PSW status is provided. The return from a routine
called by SUPERVISOR CALL normally is accom-
plished by means of LOAD PSW, which is a privi-
leged instruction.

PROGRAM CALL is provided for fast communi-
cation to a program operating in the supervisor
state or higher-authority problem state, or even to
a program with the same authority. PROGRAM
CALL permits a program to call a program oper-
ating in a different address space. This would
normally be used in the situation where the
authorization index associated with the called
address space had a higher level of authority than
that of the calling address space. The advantage
of PROGRAM CALL over SUPERVISOR CALL is
in speed, since first-and second-level interruption-
handler programs are avoided. It also provides a
possible 220 different entry points. The authori-
zation key mask in the entry-table entry permits a
particular entry point to be available to a limited
subset of the programs in the system. Thus,
some or all of the authority checking which would
otherwise have to be placed in the called program
can be eliminated. Return from a routine called
by PROGRAM CALL is normally accomplished by
means of the PROGRAM TRANSFER instruction;
however, LOAD PSW may be used if the called
routine is in the supervisor state.

PROGRAM TRANSFER is provided as the return
instruction for PROGRAM CALL. It is also useful
for calling or transferring to programs with the
same authority in another address space.
Although PROGRAM TRANSFER does not save
the current PASN, the instruction EXTRACT
PRIMARY ASN may be used to provide the PASN
for return purposes.

BRANCH AND SAVE AND SET MODE (BASSM)
is intended to be the principal calling instruction to
subroutines outside of an assembler/linkage-editor
control section (CSECT), for use by all new pro-
grams. BRANCH AND SET MODE (BSM) is
intended to be the return instruction used after a
BASSM. It is assumed that an extension to the
current V-type address constant (VCON) will be
established by the assembler and linkage editor
which consists of a 31-bit entry-point address and
a leftmost bit indicating whether the entry is in the

Chapter 5. Program Execution 5-13

24-bit or 31-bit addressing mode. This extended
VCON is shown here as “VCONE."” This calling
sequence would normally be:

L 15,VCONE
BASSM 14,15

The return from such a routine would normally be:
BSM 0,14

The BRANCH AND LINK (BAL, BALR) instruction
is provided primarily for compatibility reasons. It is
defined to operate in the 31-bit addressing mode
to increase the probability that an old, straightfor-
ward program can be modified to operate in the
31-bit addressing mode with minimal or no
change. It is recommended, however, that
BRANCH AND SAVE (BAS and BASR) be used
instead and that BRANCH AND LINK be avoided
since it places nonzero information in the left part
of the general register in the 24-bit addressing
mode, which may lead to problems. Additionally,
BRANCH AND LINK is likely to be slower than
BRANCH AND SAVE because BRANCH AND
SAVE always saves the right half of the PSW,
whereas BRANCH AND LINK must take additional
time to check the addressing mode, and then
even more time, if in the 24-bit addressing mode,
to construct the ILC, condition code, and program
mask to be placed in the leftmost byte of the link
register.

It is assumed that the normal return from a sub-
routine called by BRANCH AND LINK (BAL or
BALR) will be:

BCR 15,14

However, the standard “return instruction”:
BSM 0,14

operates correctly for all cases except for a calling
BAL executed in the 24-bit addressing mode. In
the 24-bit addressing mode, BAL causes an ILC of
10 to be placed in the leftmost two bits of the link
register. Thus, a BSM would return in the 31-bit
addressing mode. Note that an EXECUTE of

5-14 ESA/390 Principles of Operation

BALR in the 24-bit addressing mode also causes
the same ILC effect.

The BRANCH AND SAVE (BAS, BASR) instruc-
tion is provided to be used for subroutine linkage
to any program either within the same CSECT or
known to be in the same addressing mode.
BASR with the Rz field 0 is also useful for
obtaining addressability to the instruction stream
by getting a 31-bit address, uncluttered by leftmost
fields, in the 24-bit addressing mode. BRANCH
AND SAVE (BAS, BASR) is the fastest linkage
instruction since the linkage information is not
addressing-mode sensitive and since the instruc-
tion does not change the addressing mode.

The return instruction from a routine called by
BRANCH AND SAVE (BAS or BASR) may be
either

BCR 15,14

or
BSM 0,14

In some cases, it may be desirable to rewrite a
program that is called by an old program which
has not been rewritten. In such a case, the old
program, which operates in the 24-bit addressing
mode, will be given the address of an intermediate
program that will set up the correct entry and
return modes and then call the rewritten program.
Such a program is sometimes referred to as a
glue module. The instruction BRANCH AND SET
MODE (BSM) with a nonzero R: field provides the
function necessary to perform this operation effi-
ciently. This is shown in |Figure 5-3 on|

Note that the “BSM 14,15 in the glue module
causes the addressing mode to be saved in bit
position 0 of general register 14 and that bits 1-31
of general register 14 are unchanged. Thus,
when “BSM 0,14” is executed in the new program,
control passes directly back to the old program
without passing through the glue module again.

01d Program Glue Module
L 15,0LDVCON
BALR 14,15

OLDVCON DC V(GLUE)

GLUE USING *,15

NEWVCON DC

L 15,NEWVCON
BSM 14,15
V(NEW)

New Program

NEW USING =,15

BSM 0,14

Figure 5-3. Glue Module

Interruptions

Interruptions permit the CPU to change state as a
result of conditions external to the system, in sub-
channels or input/output (I/O) devices, in other
CPUs, or in the CPU itself. Details are to be
found in[Chapter 6, “Interruptions.”|

Six classes of interruption conditions are provided:
external, I/O, machine check, program, restart,
and supervisor call. Each class has two related
PSWs, called old and new, in permanently
assigned real storage locations. In all classes, an
interruption involves storing information identifying
the cause of the interruption, storing the current
PSW at the old-PSW location, and fetching the
PSW at the new-PSW location, which becomes
the current PSW.

The old PSW contains CPU-status information
necessary for resumption of the interrupted
program. At the conclusion of the program
invoked by the interruption, the instruction LOAD
PSW may be used to restore the current PSW to
the value of the old PSW.

Types of Instruction Ending

Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Partial completion of instruction execution occurs
only for interruptible instructions; it is described in
[‘Interruptible Instructions” on page 5-16|

Completion

Completion of instruction execution provides
results as called for in the definition of the instruc-
tion. When an interruption occurs after the com-
pletion of the execution of an instruction, the
instruction address in the old PSW designates the
next sequential instruction.

Suppression

Suppression of instruction execution causes the
instruction to be executed as if it specified “no
operation.” The contents of any result fields,
including the condition code, are not changed.
The instruction address in the old PSW on an
interruption after suppression designates the next
sequential instruction.

Nullification

Nullification of instruction execution has the same
effect as suppression, except that when an inter-
ruption occurs after the execution of an instruction
has been nullified, the instruction address in the
old PSW designates the instruction whose exe-
cution was nullified (or an EXECUTE instruction,
as appropriate) instead of the next sequential
instruction.

Chapter 5. Program Execution 5-15

Termination

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation
may replace all, part, or none of the contents of
the designated result fields and may change the
condition code if such change is called for by the
instruction. Unless the interruption is caused by a
machine-check condition, the validity of the
instruction address in the PSW, the interruption
code, and the ILC are not affected, and the state
or the operation of the machine is not affected in
any other way. The instruction address in the old
PSW on an interruption after termination desig-
nates the next sequential instruction.

Programming Note: Although the execution of
an instruction is treated as a no-operation when
suppression or nullification occurs, stores may be
performed as the result of the implicit tracing
action associated with some instructions. See
[‘Tracing” on page 4-10|

Interruptible Instructions

Point of Interruption

For most instructions, the entire execution of an
instruction is one operation. An interruption is per-
mitted between operations; that is, an interruption
can occur after the performance of one operation
and before the start of a subsequent operation.

For the following instructions, referred to as inter-
ruptible instructions, an interruption is permitted
also after partial completion of the instruction:

¢ COMPARE AND FORM CODEWORD

¢ COMPARE LOGICAL LONG

¢ COMPARE UNTIL SUBSTRING EQUAL

¢ MOVE LONG

e TEST BLOCK

¢ UPDATE TREE

¢ Interruptible instructions of the vector facility
(see the publication IBM Enterprise Systems
Architecture/390 Vector Operations,
SA22-7207)

Unit of Operation

Whenever points of interruption that include those
occurring within the execution of an interruptible
instruction are discussed, the term “unit of
operation” is used. For a noninterruptible instruc-
tion, the entire execution consists, in effect, in the
execution of one unit of operation.

5-16 ESA/390 Principles of Operation

The execution of an interruptible instruction is con-
sidered to consist in the execution of a number of
units of operation, and an interruption is permitted
between units of operation. The amount of data
processed in a unit of operation depends on the
particular instruction and may depend on the
model and on the particular condition that causes
the execution of the instruction to be interrupted.

When an instruction execution consists of a
number of units of operation and an interruption
occurs after some, but not all, units of operation
have been completed, the instruction is said to be
partially completed. In this case, the type of
ending (completion, inhibition, nullification, or sup-
pression) is associated with the unit of operation.
In the case of termination, the entire instruction is
terminated, not just the unit of operation.

An exception may exist that causes the first unit of
operation of an interruptible instruction not to be
completed. In this case when the ending is
nullification or suppression, all operand parame-
ters and result locations remain unchanged,
except that the condition code is unpredictable if
the instruction is defined to set the condition code.

Execution of Interruptible Instructions

The execution of an interruptible instruction is
completed when all units of operation associated
with that instruction are completed. When an
interruption occurs after completion, inhibition,
nullification, or suppression of a unit of operation,
all preceding units of operation have been com-
pleted, and subsequent units of operation and
instructions have not been started. The main dif-
ference between these types of ending is the han-
dling of the current unit of operation and whether
the instruction address stored in the old PSW
identifies the current instruction or the next
sequential instruction.

At the time of an interruption, changes to register
contents, which are due to be made by an inter-
ruptible vector instruction beyond the point of
interruption, have not yet been made. Changes to
storage locations, however, which are due to be
made by an interruptible vector instruction beyond
the point of interruption, may have occurred for
one or more storage locations beyond the location
containing the element identified by the inter-
ruption parameters, but not for any location
beyond the last element specified by the instruc-

tion and not for any locations for which access
exceptions exist. Changes to storage locations or
register contents which are due to be made by
instructions following the interrupted instruction
have not yet been made at the time of inter-
ruption.

Completion: On completion of the last unit of
operation of an interruptible instruction, the
instruction address in the old PSW designates the
next sequential instruction. The result location for
the current unit of operation has been updated. It
depends on the particular instruction how the
operand parameters are adjusted. On completion
of a unit of operation other than the last one, the
instruction address in the old PSW designates the
interrupted instruction or an EXECUTE instruction,
as appropriate. The result location for the current
unit of operation has been updated. The operand
parameters are adjusted such that the execution
of the interrupted instruction is resumed from the
point of interruption when the old PSW stored
during the interruption is made the current PSW.

Inhibition: ~ When a unit of operation is inhibited,
the instruction address in the old PSW designates
the interrupted instruction or an EXECUTE instruc-
tion, as appropriate. The result location for the
current unit of operation is not changed. The
operand parameters are adjusted such that, if the
instruction is reexecuted, execution of the inter-
rupted instruction is resumed with the next unit of
operation. Inhibition occurs only during interrup-
tible vector instructions and is described in more
detail in the publication IBM Enterprise Systems
Architecture/390 Vector Operations, SA22-7207.

Nullification: When a unit of operation is nulli-
fied, the instruction address in the old PSW desig-
nates the interrupted instruction or an EXECUTE
instruction, as appropriate. The result location for
the current unit of operation remains unchanged.
The operand parameters are adjusted such that, if
the instruction is reexecuted, execution of the
interrupted instruction is resumed with the current
unit of operation.

Suppression: When a unit of operation is sup-
pressed, the instruction address in the old PSW
designates the next sequential instruction. The
operand parameters, however, are adjusted so as
to indicate the extent to which instruction exe-
cution has been completed. If the instruction is

reexecuted after the conditions causing the sup-
pression have been removed, the execution is
resumed with the current unit of operation.

Termination: When an exception which causes
termination occurs as part of a unit of operation of
an interruptible instruction, the entire operation is
terminated, and the contents, in general, of any
fields due to be changed by the instruction are
unpredictable. On such an interruption, the
instruction address in the old PSW designates the
next sequential instruction.

The differences among the five types of ending for
a unit of operation are summarized in Figure 5-4.

Unit of Instruction Operand Current Result
Operation Is Address Parameters Location
Completed
Last unit Next instruc-|Depends on Changed
of oper- tion the instruc-
ation tion
Any other Current in- |Next unit of |Changed
unit of struction operation
operation
Inhibited Current in- |Next unit of [Unchanged
struction operation
Nullified Current in- |Current unit [Unchanged
struction of operation
Suppressed Next instruc-|Current unit |Unchanged
tion of operation
Terminated Next instruc-|Unpredictable|Unpredictable
tion

Figure 5-4. Types of Ending for a Unit of Operation

If an instruction is defined to set the condition
code, the execution of the instruction makes the
condition code unpredictable except when the last
unit of operation has been completed.

Condition-Code Alternative to
Interruptibility

The following instructions are not interruptible
instructions but instead may be completed after
performing a CPU-determined subportion of the
processing specified by the parameters of the
instructions:

¢ CHECKSUM

e COMPARE LOGICAL STRING

¢ COMPARE LOGICAL LONG EXTENDED
¢ MOVE LONG EXTENDED

* MOVE STRING

e SEARCH STRING

5-17

Chapter 5. Program Execution

When any of the above instructions is completed
after performing only a CPU-determined amount of
processing instead of all specified processing, the
instruction sets condition code 3. On such com-
pletion, the instruction address in the PSW desig-
nates the next sequential instruction, and the
operand parameters of the instruction have been
adjusted so that the processing of the instruction
can be resumed simply by branching back to the
instruction to execute it again. When the instruc-
tion has performed all specified processing, it sets
a condition code other than 3.

The points at which any of the above instructions
may set condition code 3 are comparable to the
points of interruption of an interruptible instruction,
and the amount of processing between adjacent
points is comparable to a unit of operation of an
interruptible instruction. However, since the
instruction is not interruptible, each execution is
considered the execution of one unit of operation.

Completion with the setting of condition code 3
permits interruptions to occur. Depending on the
model and the instruction, condition code 3 may or
may not be set when there is not a need for an
interruption.

The COMPARE UNTIL SUBSTRING EQUAL
instruction is both an interruptible instruction and
one that may set condition code 3 after performing
a CPU-determined amount of processing.

Programming Notes:

1. Any interruption, other than supervisor call
and some program interruptions, can occur
after a partial execution of an interruptible
instruction. In particular, interruptions for
external, 1/0, machine-check, restart, and
program interruptions for access exceptions
and PER events can occur between units of
operation.

2. The amount of data processed in a unit of
operation of an interruptible instruction
depends on the model and may depend on
the type of condition which causes the exe-
cution of the instruction to be interrupted or
stopped. Thus, when an interruption occurs at
the end of the current unit of operation, the
length of the unit of operation may be different
for different types of interruptions. Also, when
the stop function is requested during the exe-
cution of an interruptible instruction, the CPU

5-18 ESA/390 Principles of Operation

enters the stopped state at the completion of
the execution of the current unit of operation.
Similarly, in the instruction-step mode, only a
single unit of operation is performed, but the
unit of operation for the various cases of stop-
ping may be different.

Exceptions to Nullification and
Suppression

In certain unusual situations, the result fields of an
instruction having a store-type operand are
changed in spite of the occurrence of an exception
which would normally result in nullification or sup-
pression. These situations are exceptions to the
general rule that the operation is treated as a no-
operation when an exception requiring nullification
or suppression is recognized. Each of these situ-
ations may result in the turning on of the change
bit associated with the store-type operand, even
though the final result in storage may appear
unchanged. Depending on the particular situation,
additional effects may be observable. The extent
of these effects is described along with each of
the situations.

All of these situations are limited to the extent that
a store access does not occur and the change bit
is not set when the store access is prohibited. For
the CPU, a store access is prohibited whenever
an access exception exists for that access, or
whenever an exception exists which is of higher
priority than the priority of an access exception for
that access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the
instruction address in the old PSW designates the
next sequential instruction. When an interruption
for an exception requiring nullification occurs, the
instruction address in the old PSW designates the
instruction causing the exception even though
partial results may have been stored.

Storage Change and Restoration for

DAT-Associated Access Exceptions

In this section, the term “DAT-associated access
exceptions” is used to refer to those exceptions
which may occur as part of the dynamic-address-
translation process. These exceptions are page
translation, segment translation, translation specifi-
cation, and addressing due to a DAT-table entry
being designated at a location that is not available
in the configuration. The first two of these

exceptions normally cause nullification, and the
last two normally cause suppression. Protection
exceptions, including those due to page pro-
tection, are not considered to be DAT-associated
access exceptions.

For DAT-associated access exceptions, on some
models, channel programs may observe the
effects on storage as described in the following
case.

When, for an instruction having a store-type
operand, a DAT-associated access exception is
recognized for any operand of the instruction, that
portion, if any, of the store-type operand which
would not cause an exception may be changed to
an intermediate value but is then restored to the
original value.

The accesses associated with storage change and
restoration for DAT-associated access exceptions
are only observable by channel programs and are
not observable by other CPUs in a multiproc-
essing configuration. Except for instructions which
are defined to have multiple-access operands, the
intermediate value, if any, is always equal to what
would have been the final value if the
DAT-associated access exception had not
occurred.

Programming Notes:

1. Storage change and restoration for
DAT-associated access exceptions occur in
two main situations:

a. The exception is recognized for a portion
of a store-type operand which crosses a
page boundary, and the other portion has
no access exception.

b. The exception is recognized for one
operand of an instruction having two
storage operands (for example, an
SS-format instruction or MOVE LONG),
and the other operand, which is a store-
type operand, has no access exception.

2. To avoid letting a channel program observe
intermediate operand values due to storage
change and restoration for DAT-associated
access exceptions (especially when a CCW
chain is modified), the CPU program should
do one of the following:

a. Operate on one storage page at a time

b. Perform preliminary testing to ensure that
no exceptions occur for any of the
required pages

c. Operate with DAT off

Modification of DAT-Table Entries

When a valid and attached DAT-table entry is
changed to a value which would cause an excep-
tion, and when, before the TLB is cleared of
entries which qualify for substitution for that entry,
an attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
the contents of any fields due to be changed by
the instruction are unpredictable. Results, if any,
associated with the virtual address whose
DAT-table entry was changed may be placed in
those real locations originally associated with the
address. Furthermore, it is unpredictable whether
or not an interruption occurs for an access excep-
tion that was not initially applicable. On some
machines, this situation may be reported by
means of an instruction-processing-damage
machine check with the delayed-access-exception
bit also indicated.

Trial Execution for Editing Instructions

and Translate Instruction

For the instructions EDIT, EDIT AND MARK, and
TRANSLATE, the portions of the operands that
are actually used in the operation may be estab-
lished in a trial execution for operand accessibility
that is performed before the execution of the
instruction is started. This trial execution consists
in an execution of the instruction in which results
are not stored. If the first operand of TRANS-
LATE or either operand of EDIT or EDIT AND
MARK is changed by another CPU or by a
channel program, after the initial trial execution but
before completion of execution, the contents of
any fields due to be changed by the instruction
are unpredictable. Furthermore, it is unpredictable
whether or not an interruption occurs for an
access exception that was not initially applicable.

Authorization Mechanisms

The authorization mechanisms which are
described in this section permit the control
program to establish the degree of function which
is provided to a particular semiprivileged program.
(A summary of the authorization mechanisms is
given in [Figure 5-5 on page 5-23|) The authori-

Chapter 5. Program Execution 5-19

zation mechanisms are intended for use by pro-
grams considered to be semiprivileged, that is,
programs which are executed in the problem state
but which may be authorized to use additional
capabilities. With these authorization controls, a
hierarchy of programs may be established, with
programs at a higher level having a greater
degree of privilege or authority than programs at a
lower level. The range of functions available at
each level, and the ability to transfer control from
a lower to a higher level, are specified in tables
which are managed by the control program.
When the linkage stack is used, a nonhierarchical
transfer of control also can be specified.

A semiprivileged instruction is one which can be
executed in the problem state, but which is subject
to the control of one or more of the authorization
mechanisms described in this section. There are
26 semiprivileged instructions and also the privi-
leged LOAD ADDRESS SPACE PARAMETERS
instruction that are controlled by the authorization
mechanisms. All of these semiprivileged and priv-
ileged instructions are described in
[‘Control Instructions.”]

The instructions controlled by the authorization
mechanisms are listed in [Figure 5-5 on|
[page 5-23 The figure also shows additional
authorization mechanisms that do not control spe-
cifically semiprivileged instructions; they control
implicit access-register translation (access-register
translation as part of an instruction making a
storage reference) and also access-register trans-
lation in the LOAD REAL ADDRESS, TEST
ACCESS, and TEST PROTECTION instructions.
These additional mechanisms (the extended
authorization index, ALE sequence number, and
ASTE sequence number) are described in
“Access-Register-Specified Address Spaces” on|

Eaﬁe 5—32].

Mode Requirements

Most of the semiprivileged instructions can be
executed only with DAT on. Basic PROGRAM
CALL, and PROGRAM TRANSFER, are valid only
in the primary-space mode. (Basic PROGRAM
CALL is the PROGRAM CALL operation when the
linkage stack is not used. When the linkage stack
is used, the PROGRAM CALL operation is called
stacking PROGRAM CALL). MOVE TO
PRIMARY and MOVE TO SECONDARY are valid
only in the primary-space and secondary-space
modes. BRANCH AND STACK, stacking

5-20 ESA/390 Principles of Operation

PROGRAM CALL, PROGRAM CALL FAST, and
PROGRAM RETURN are valid only in the
primary-space and access-register modes.
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE are valid only in the primary-space,
access-register, and home-space modes. When a
semiprivileged instruction is executed in an invalid
translation mode, a special-operation exception is
recognized.

PROGRAM TRANSFER specifies a new value for
the problem-state bit in the PSW. If a program in
the problem state attempts to execute PROGRAM
TRANSFER and set the supervisor state, a
privileged-operation exception is recognized. A
privileged-operation exception is also recognized
on an attempt to use RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST to set the home-space
mode in the problem state.

Extraction-Authority Control

The extraction-authority-control bit is located in bit
position 4 of control register 0. In the problem
state, bit 4 must be one to allow completion of
these instructions:

¢ EXTRACT PRIMARY ASN

e EXTRACT SECONDARY ASN

¢ INSERT ADDRESS SPACE CONTROL
¢ INSERT PSW KEY

¢ INSERT VIRTUAL STORAGE KEY

Otherwise, a privileged-operation exception is
recognized. The extraction-authority control is not
examined in the supervisor state.

PSW-Key Mask

The PSW-key mask consists of bits 0-15 in control
register 3, with the bits corresponding to the
values 0-15, respectively, of the PSW key. These
bits are used in the problem state to control which
keys and entry points are authorized for the
program. The PSW-key mask is modified by
PROGRAM TRANSFER, is modified or loaded by
BRANCH AND SET AUTHORITY and PROGRAM
CALL, and is loaded by LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL FAST, and
PROGRAM RETURN. The PSW-key mask is
used in the problem state to control the following:

e The PSW-key values that can be set by
means of the instruction SET PSW KEY
FROM ADDRESS.

¢ The PSW-key values that are valid for the five
move instructions that specify a second
access key: MOVE TO PRIMARY, MOVE TO
SECONDARY, MOVE WITH KEY, MOVE
WITH SOURCE KEY, and MOVE WITH DES-
TINATION KEY.

e The entry points which can be called by
means of PROGRAM CALL. In this case, the
PSW-key mask is ANDed with the authori-
zation key mask in the entry-table entry, and,
if the result is zero, the program is not author-
ized.

When an instruction in the problem state attempts
to use a key not authorized by the PSW-key
mask, a privileged-operation exception is recog-
nized. The same action is taken when an instruc-
tion in the problem state attempts to call an entry
not authorized by the PSW-key mask. The
PSW-key mask is not examined in the supervisor
state, all keys and entry points being valid.

Secondary-Space Control

Bit 5 of control register 0 is the secondary-space-
control bit. This bit provides a mechanism
whereby the control program can indicate whether
or not the secondary segment table has been
established. Bit 5 may be required to be one to
allow completion of SET ADDRESS SPACE
CONTROL FAST and must be one to allow com-
pletion of these instructions:

¢ MOVE TO PRIMARY
* MOVE TO SECONDARY
e SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception is recog-
nized. The secondary-space control is examined
in both the problem and supervisor states.

Subsystem-Linkage Control

When the address-space-function (ASF) control,
bit 15 of control register 0, is zero, bit O of control
register 5 is the subsystem-linkage-control bit.
When the ASF control is one, bit 96 of the primary
ASN-second-table entry is the subsystem-linkage-
control bit. The subsystem-linkage control must
be one to allow completion of these instructions:

¢ PROGRAM CALL
* PROGRAM TRANSFER

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and supervisor states and

controls both the space-switching and current-
primary versions of the instructions.

ASN-Translation Control

Bit 12 of control register 14 is the
ASN-translation-control bit. This bit provides a
mechanism whereby the control program can indi-
cate whether ASN translation may occur while a
particular program is being executed. Bit 12 must
be one to allow completion of these instructions:

¢ LOAD ADDRESS SPACE PARAMETERS

e SET SECONDARY ASN

¢ PROGRAM CALL with space switching

¢ PROGRAM RETURN with space switching
and also when the restored secondary ASN is
not equal to the restored primary ASN

¢ PROGRAM TRANSFER with space switching

Otherwise, a special-operation exception is recog-
nized. The ASN-translation control is examined in
both the problem and supervisor states. The
ASN-translation control is examined by
PROGRAM CALL even when PROGRAM CALL
obtains the address of the ASN-second-table entry
directly from the entry-table entry, instead of by
performing ASN translation.

Authorization Index

The authorization index is contained in bit posi-
tions 0-15 of control register 4. The authorization
index is associated with the primary address
space and is loaded along with the PASN when
PROGRAM CALL with space switching,
PROGRAM CALL FAST with space switching,
PROGRAM RETURN with space switching,
PROGRAM TRANSFER with space switching, or
LOAD ADDRESS SPACE PARAMETERS is exe-
cuted. The authorization index is used to deter-
mine whether a program is authorized to establish
a particular address space. A program may be
authorized to establish the address space as a
secondary-address space, as a primary-address
space, or both. The authorization index is exam-
ined in both the problem and supervisor states.

Associated with each address space is an
authority table. The authorization index is used to
select an entry in the authority table. Each entry
contains two bits, which indicate whether the
program with that authorization index is permitted
to establish the address space as a primary
address space, as a secondary address space, or
both.

Chapter 5. Program Execution 5-21

The instruction SET SECONDARY ASN with
space switching, and the instruction PROGRAM
RETURN when the restored secondary ASN is not
equal to the restored primary ASN, use the
authorization index to test the secondary-authority
bit in the authority-table entry to determine if the
address space can be established as a secondary
address space. The tested bit must be one; oth-
erwise, a secondary-authority exception is recog-
nized.

The instruction PROGRAM TRANSFER with
space switching uses the authorization index to
test the primary-authority bit in the authority-table
entry to determine if the address space can be
established as a primary address space. The
tested bit must be one; otherwise, a primary-
authority exception is recognized.

The instruction PROGRAM CALL with space
switching causes a new authorization index to be
loaded from the ASN-second-table entry, and
PROGRAM CALL FAST causes one to be loaded
directly from the PCF-entry-table entry. This
permits the program which is called to be given an
authorization index which authorizes it to access
more or different address spaces than those
authorized for the calling program. The
instructions PROGRAM RETURN with space
switching and PROGRAM TRANSFER with space
switching restore the authorization index that is
associated with the returned-to address space.

The secondary-authority bit in the authority-table
entry may also be used, along with the extended
authorization index, to determine if the program is
authorized to use an access-list entry in access-
register translation. This is described in

Register-Specified Address Spaces” on|

Eaﬁe 5-32].

Program-Call-Fast Control

The program-call-fast-control bit is located in bit
position 28 of control register 0. Bit 28 must be
one to allow execution of PROGRAM CALL FAST.
When bit 28 is zero, PROGRAM CALL FAST is
treated as a PROGRAM CALL instruction.

5-22 ESA/390 Principles of Operation

Access-Register and Linkage-Stack
Mechanisms

Bit 15 of control register 0 is the address-space-
function (ASF) control bit. Bit 15 must be one to
allow completion of these instructions:

¢ BRANCH AND SET AUTHORITY

¢ BRANCH AND STACK

* BRANCH IN SUBSPACE GROUP
e EXTRACT STACKED REGISTERS
e EXTRACT STACKED STATE

e MODIFY STACKED STATE

¢ PROGRAM CALL FAST

* PROGRAM RETURN

e TEST ACCESS

Otherwise, a special-operation exception is recog-
nized. The ASF control is examined in both the
problem and supervisor states and controls both
the space-switching and current-primary forms of
PROGRAM RETURN.

Under certain circumstances when the ASF
control is or has been zero, erroneous entries may
exist in the ART-lookaside buffer (ALB), and this
can cause erroneous access-register translation.
A description of the circumstances and of how to
remove the erroneous entries from the ALB
appears in [‘Formation of ALB Entries” on|

The ASF control also controls the setting of the
access-register mode by RESUME PROGRAM,
SET ADDRESS SPACE CONTROL, and SET
ADDRESS SPACE CONTROL FAST, the avail-
ability of the stacking PROGRAM CALL operation,
control-register contents, the sizes of the entry-
table entry and ASN-second-table entry, and other
functions. A complete description of the effects of
the ASF control is in [‘Address-Space-Function|
[Control” on page 5-40|

The use of access registers also involves the
extended authorization index, ALE sequence
number, and ASTE sequence number as authori-
zation mechanisms. These are described in
[‘Access-Register-Specified Address Spaces” on|

Authorization Mechanism

Func- Space
tion Mode PSW- Ext.- Sw.-
or Requirement Sec.-|ASN- Extr.|Key |Auth. [Auth. Event
In- Subs. [Space|Trans. |[Auth.|Mask |Index|Index|ALE |ASTE|ASF Ctl.
struc- |Pr.|Trans. |Link.|[Ctl. |Ctl. Ctl. [(3.0-[(4.0-|(8.0-|Seq.|Seq.|Ct1. (1.0,
tion Op. [Mode Ct1.7((0.5)|(14.12)|(6.4)|3.15)|4.15)|8.15) [No.8|No.2|(0.15)|13.0)
Implic. A EA |ALQ [ASQ | EALB

AR

trans.

BAKR S0-PA SO

BSA-ba Q SO

BSA-ra SO

BSG SO-PSAH ASQ SO

EPAR SO-PSAH Q

EREG SO-PAH SO

ESAR S0-PSAH Q

ESTA SO-PAH S0

IAC SO-PSAH Q

IPK Q

IVSK SO-PSAH Q

LASP P SO cC Y cC
LRA P CCA |CCA |CCA
MSTA SO-PAH SO
MVCDK Q
MVCK Q
MVCP SO0-PS SO Q
MVCS S0-PS SO Q
MVCSK Q

bPC-cp S0-P SO Q Y

sPC-cp S0-PA SO Q! Z

bPC-ss SO-P SO SO Q! Y X1
sPC-ss SO-PA SO SO Q! YA X1
PCF-cpt? SO-PA S0
PCF-sst1 S0-PA S0 X1
PR-cp S0-PA S04 SAs SO

PR-ss SO-PA SO PASAS S0 X1
PT-cp Qz|S0-P SO

PT-ss Q2|S0-P SO SO PA Y X1
RP S05 | X2
SAC Q3 |SO-PSAH SO S05 | X2
SACF Q3 |SO-PSAH N S0 | X2
SPKA Q

SSAR-cp SO0-PSAH SO

SSAR-ss SO-PSAH SO SA Y

Figure 5-5 (Part 1 of 2). Summary of Authorization Mechanisms

Chapter 5. Program Execution

5-23

Authorization Mechanism
Func- Space
tion Mode PSW- Ext.- Sw.-
or Requirement Sec.-|ASN- Extr.|Key |Auth. [Auth. Event
In- Subs. [Space|Trans. |[Auth.|Mask |Index|Index|ALE |ASTE|ASF Ctl.
struc- |Pr.|Trans. |Link.|[Ctl. |Ctl. Ctl. [(3.0-[(4.0-|(8.0-|Seq.|Seq.|Ct1. (1.0,
tion Op. [Mode Ct1.7((0.5)|(14.12)|(6.4)[3.15)|4.15)|8.15) [No.8|No.2|(0.15)|13.0)
TAR cC cC | CC SO
TPROT P cC cC | CC

Figure 5-5 (Part 2 of 2). Summary of Authorization Mechanisms

Explanation for Summary of Authorization
Mechanismes:

1

5-24

The PSW-key mask is ANDed with the
authorization key mask in the entry-
table entry.

The exception is recognized on an
attempt to set the supervisor state
when in the problem state.

The exception is recognized on an
attempt to set the home-space mode
when in the problem state.

ASN translation is performed for the
new SASN, and the exception may be
recognized, only when the new SASN
is not equal to the new PASN.

The exception
attempt to set
mode.

is recognized on an
the access-register

Secondary authority is checked for the
new SASN, and the exception may be
recognized, only when the new SASN
is not equal to the new PASN.

Subsystem-linkage control is bit 0 of
control register 5 if the address-space-
function (ASF) control, bit 15 of control
register 0, is zero; or it is bit 96 of the
primary ASN-second-table entry if the
ASF control is one.

ALE sequence number is bits 8-15 of
the access-list-entry token and bits 8-15
of the access-list entry.

ASTE sequence number is bits 96-127
of the access-list entry and bits
160-191 of the ASN-second-table entry.

ESA/390 Principles of Operation

10

11

ALQ
ASQ
bPC
cc

CCA

CRx.y
EA
EALB

PA
PASA

SO

Whether the exception is recognized is
unpredictable.

PROGRAM CALL FAST is treated as
PROGRAM CALL if the program-call-
fast control, bit 28 of control register 0,
is zero.

Access-register translation occurs only
in the access-register mode.

ALE-sequence exception.
ASTE-sequence exception.

Basic (nonstacking) PROGRAM CALL.
Test results in setting a condition code.

Test results in setting a condition code.
The test occurs only in the access-
register mode.

Control register X, bit position y.
Extended-authority exception.

When bit 15 of control register O is or
has been zero, erroneous ALB entries
may exist under certain circumstances.
See [‘Formation of ALB Entries”

[page 551

Privileged-operation exception for privi-
leged instruction.

Primary-authority exception.

Primary-authority exception
secondary-authority exception.

or

Privileged-operation exception for semi-
privileged instruction. Authority
checked only in the problem state.

Secondary-authority exception.

Special-operation exception.

SO-P CPU must be in the primary-space
mode; special-operation exception if the
CPU is in the secondary-space,
access-register, home-space, or real
mode.

SO-PA CPU must be in the primary-space or
access-register mode; special-operation
exception if the CPU is in the
secondary-space, home-space, or real

mode.

SO-PAH CPU must be in the primary-space,
access-register, or home-space mode;
special-operation exception if the CPU
is in the secondary-space or real mode.

SO-PS CPU must be in the primary-space or
secondary-space mode; special-
operation exception if the CPU is in the
home-space, access-register, or real

mode.

SO-PSAH CPU must be in the primary-space,
secondary-space, access-register, or
home-space mode; special-operation
exception if the CPU is in the real

mode.
sPC Stacking PROGRAM CALL.
X1 When bit O of control register 1 is one,

a space-switch event is recognized.
The operation is completed.

X2 When bit 0 of control register 1 or 13 is
one and the instruction space is
changed to or from the home address
space, a space-switch event is recog-
nized. The operation is completed.

Y The bit is tested to determine the size
of the ASTE and/or the ETE.
4 Stacking PROGRAM CALL can occur

only when the ASF control is one.

PC-Number Translation

PC-number translation is the process of translating
the 20-bit PC number to locate an entry-table
entry as part of the execution of the PROGRAM
CALL instruction. To perform this translation, the
20-bit PC number is divided into two fields. Bits
12-23 are the linkage index (LX), and bits 24-31
are the entry index (EX). The effective address,
from which the PC-number is taken, has the fol-
lowing format:

111111111717 LX EX
0 12 24 31

The translation is performed by means of two
tables: a linkage table and an entry table. Both
of these tables reside in real storage. The
linkage-table designation may reside in control
register 5, or it may reside instead in a third area
in storage, called the primary ASN-second-table
entry (primary ASTE), in which case the origin of
the primary ASTE is in control register 5. The
entry table is designated by means of a linkage-
table entry.

PC-Number Translation Control

PC-number translation may be controlled by
means of a linkage-table designation in control
register 5, or it may be controlled by means of
controls in control registers 0 and 5 and a linkage-
table designation in storage.

Control Register 0

Bit 15 of control register 0 is the address-space-
function (ASF) control bit. When the ASF control
is zero, the linkage-table designation is in control
register 5, and the entry-table entry has a length
of 16 bytes. When the ASF control is one, control
register 5 contains the origin of the primary
ASN-second-table entry, the linkage-table desig-
nation is in the primary ASTE, and the entry-table
entry has a length of 32 bytes.

The ASF control has other effects also. A com-
plete description of the effects of the ASF control

is in [Address-Space-Function _ Control”_ on|
page 5-40

Control Register 5

When the ASF control in control register 0 is zero,
control register 5 contains the linkage-table desig-
nation. The register has the following format:

V| Linkage-Table Origin LTL

01 25 31

Subsystem-Linkage Control (V): Bit O of control
register 5 is the subsystem-linkage-control bit. Bit
0 must be one to allow completion of these
instructions:

¢ PROGRAM CALL
¢ PROGRAM TRANSFER

Chapter 5. Program Execution 5-25

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and the supervisor states and
controls both the space-switching and current-
primary versions of the instructions.

Linkage-Table Origin: Bits 1-24 of control reg-
ister 5, with seven zeros appended on the right,
form a 31-bit real address that designates the
beginning of the linkage table.

Linkage-Table Length (LTL): Bits 25-31 of
control register 5 specify the length of the linkage
table in units of 128 bytes, thus making the length
of the linkage table variable in multiples of 32 four-
byte entries. The length of the linkage table, in
units of 128 bytes, is one more than the value in
bit positions 25-31. The linkage-table length is
compared against the leftmost seven bits of the
linkage-index portion of the PC number to deter-
mine whether the linkage index designates an
entry within the linkage table.

When the ASF control is one, control register 5
specifies the location of the primary
ASN-second-table entry. The register has the fol-
lowing format:

PASTEOQ

01 26 31

Primary-ASTE Origin (PASTEO): Bits 1-25 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates
the beginning of the primary ASTE.

When the ASF control is one, the linkage-table
designation is in bytes 12-15 of the primary ASTE.
Thus, the subsystem-linkage control (V) is bit O of
bytes 12-15 of the primary ASTE, the linkage-table
origin (LTO) is bits 1-24 of bytes 12-15, and the
linkage-table length (LTL) is bits 25-31 of bytes
12-15.

PC-Number Translation Tables

The PC-number translation process consists in a
two-level lookup using two tables: a linkage table
and an entry table. These tables reside in real
storage.

5-26 ESA/390 Principles of Operation

Linkage-Table Entries
The entry fetched from the linkage table has the
following format:

—

Entry-Table Origin ETL

01 26 31

The fields in the linkage-table entry are allocated
as follows:

LX Invalid Bit (I): Bit 0 controls whether the
entry table associated with the linkage-table entry
is available.

When the bit is zero, PC-number translation pro-
ceeds by using the linkage-table entry. When the
bit is one, an LX-translation exception is recog-
nized.

Entry-Table Origin: Bits 1-25, with six zeros
appended on the right, form a 31-bit real address
that designates the beginning of the entry table.

Entry-Table Length (ETL): When the address-
space-function (ASF) control, bit 15 of control reg-
ister 0, is zero, bits 26-31 specify the length of the
entry table in units of 64 bytes, thus making the
entry table variable in multiples of four 16-byte
entries. When the ASF control is one, bits 26-31
specify the entry-table length in units of 128 bytes,
thus making the table variable in multiples of four
32-byte entries. The length of the entry table, in
units of 64 or 128 bytes, is one more than the
value in bit positions 26-31. The entry-table
length is compared against the leftmost six bits of
the entry index to determine whether the entry
index designates an entry within the entry table.

Entry-Table Entries

When the ASF control in control register 0 is zero,
the entry-table entry has a length of 16 bytes.
When the ASF control is one, the entry has a
length of 32 bytes. The format of the 16-byte
entry-table entry is identical to that of the first 16
bytes of the 32-byte entry. The 32-byte entry-
table entry has the following format:

Auth Key Mask ASN

——— — —

Al Entry Instruction Address |P

32 63

Entry Parameter

64 95

Entry Key Mask

96 112 127

Linkage-Stack Fields

128 159

ASTE Address

160 186 191
192 223
224 255

The fields in the entry-table entry are allocated as
follows:

Authorization Key Mask: Bits 0-15 are used to
verify whether the program issuing the PROGRAM
CALL instruction, when in the problem state, is
authorized to call this entry point. The authori-
zation key mask and the current PSW-key mask in
control register 3 are ANDed, and the result is
checked for all zeros. If the result is all zeros, a
privileged-operation exception is recognized. The
test is not performed in the supervisor state.

ASN: Bits 16-31 specify whether a space-
switching (PC-ss) operation or a to-current-primary
(PC-cp) operation is to occur. When bits 16-31
are zero, PC-cp is specified. When bits 16-31 are
not all zeros, PC-ss is specified, and the bits are
the ASN that replaces the primary ASN.

Entry Addressing Mode (A): Bit 32 replaces the
addressing-mode bit, bit 32 of the current PSW,
as part of the PROGRAM CALL operation. When
bit 32 is zero, bits 33-39 must also be zero; other-
wise, a PC-translation-specification exception is
recognized.

Entry Instruction Address: Bits 33-62, with a
zero appended on the right, form the instruction
address which replaces the instruction address in
the PSW as part of the PROGRAM CALL opera-
tion.

Entry Problem State (P): Bit 63 replaces the
problem-state bit, bit 15 of the current PSW, as
part of the PROGRAM CALL operation.

Entry Parameter:
general register 4.

Bits 64-95 are placed in

Entry Key Mask: Bits 96-111 are ORed into the
PSW-key mask in control register 3 as part of the
PROGRAM CALL operation.

ASTE Address: When the address-space-
function (ASF) control is one and bits 16-31 are
not all zeros, bits 161-185, with six zeros
appended on the right, form the real
ASN-second-table-entry address that should result
from applying the ASN-translation process to bits
16-31. When the ASF control is one, it is unpre-
dictable whether PC-ss uses bits 161-185 or uses
ASN translation to obtain the ASTE address.

Bits 128-159 are used in connection with the
linkage stack and are described in [‘Extended
[Entry-Table Entries” on page 5-61|.

Bits 112-127, 160, and 186-255 are reserved for
possible future extensions and should be zeros.

Programming Note: The entry parameter is
intended to provide the called program with an
address which can be depended upon and used
as the basis of addressability in locating neces-
sary information which may be environment
dependent. The parameter may be appropriately
changed for each environment by setting up dif-
ferent entry tables. The alternative -- obtaining
this information from the calling program -- may
require extensive validity checking or may present
an integrity exposure.

5-27

Chapter 5. Program Execution

PC-Number-Translation Process

The translation of the PC number is performed by
means of a linkage table and entry table both of
which reside in real storage. The translation may
also require the wuse of the primary
ASN-second-table entry, which also resides in real
storage.

For the purposes of PC-number translation, the
20-bit PC number is divided into two parts: the
leftmost 12 bits are called the linkage index (LX),
and the rightmost eight bits are called the entry
index (EX). The LX is used to select an entry
from the linkage table, the starting address and

5-28 ESA/390 Principles of Operation

length of which are specified by the linkage-table
designation in either control register 5 or the
primary ASTE. This entry designates the entry
table to be used. The EX field of the PC number
is then used to select an entry from the entry
table.

When, for the purposes of PC-number translation,
accesses are made to main storage to fetch
entries from the primary ASTE, linkage table, and
entry table, key-controlled protection does not

apply.

The PC-number-translation process is shown in
[Figure 5-6 on page 5-29|

Linkage-Table Designation
in CR5 or Primary ASTE

v LTO LTL

PC Number
(x128)
LX EX
(x4) | (xN)
Linkage Table
—>
R |I ETO ETL
(x64)
Entry Table
_,
R AKM ASN [A IA P PARM EKM

L.-S. Fields ASTE Address

N: 16 if ASF control, bit 15 of control register 0, is zero; 32 if

ASF control is one
R: Address is real

Figure 5-6. PC-Number Translation

Obtaining the Linkage-Table

Designation

When the address-space-function (ASF) control,
bit 15 of control register O, is zero, the linkage-
table designation is the contents of control register
5. When the ASF control is one, the linkage-table
designation is obtained from bytes 12-15 of the
primary ASN-second-table entry, the starting
address of which is specified by the contents of
control register 5.

When the ASF control is one, the 31-bit real
address of the linkage-table designation is
obtained by appending six zeros on the right to

the primary-ASTE origin, bits 1-25 of control reg-
ister 5, and adding 12. The addition cannot cause
a carry into bit position 0. All 31 bits of the
address are used, regardless of whether the
current PSW specifies the 24-bit or 31-bit
addressing mode.

When the ASF control is one, all four bytes of the
linkage-table designation are fetched concurrently
from the primary ASTE. The fetch access is not
subject to protection. When the storage address
which is generated for fetching the linkage-table
designation designates a location which is not
available in the configuration, an addressing

5-29

Chapter 5. Program Execution

exception is recognized, and the operation is sup-
pressed. Besides the linkage-table designation,
no other field in the primary ASTE is examined.

Linkage-Table Lookup

The linkage-index (LX) portion of the PC number,
in conjunction with the linkage-table origin, is used
to select an entry from the linkage table.

The 31-bit real address of the linkage-table entry
is obtained by appending seven zeros on the right
to the contents of bit positions 1-24 of the linkage-
table designation and adding the linkage index,
with two rightmost and 17 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may
be recognized, or the carry may be ignored,
causing the table to wrap from 231 - 1 to zero.
All 31 bits of the address are used, regardless of
whether the current PSW specifies the 24-bit or
31-bit addressing mode.

As part of the linkage-table-lookup process, the
leftmost seven bits of the linkage index are com-
pared against the linkage-table length, bits 25-31
of the linkage-table designation, to establish
whether the addressed entry is within the linkage
table. If the value in the linkage-table-length field
is less than the value in the seven leftmost bits of
the linkage index, an LX-translation exception is
recognized.

All four bytes of the linkage-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the linkage-table entry
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

Bit 0 of the linkage-table entry specifies whether
the entry table corresponding to the linkage index
is available. This bit is inspected, and, if it is one,
an LX-translation exception is recognized.

When no exceptions are recognized in the
process of linkage-table lookup, the entry fetched
from the linkage table designates the origin and
length of the corresponding entry table.

5-30 ESA/390 Principles of Operation

Entry-Table Lookup

The entry-index (EX) portion of the PC number, in
conjunction with the entry-table origin contained in
the linkage-table entry, is used to select an entry
from the entry table.

The 31-bit real address of the entry-table entry is
obtained by appending six zeros on the right to
the entry-table origin and adding: (1) if the ASF
control is zero, the entry index, with four rightmost
and 19 leftmost zeros appended; or (2) if the ASF
control is one, the entry index, with five rightmost
and 18 leftmost zeros appended. When a carry
into bit position O occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 231 - 1 to zero. All 31 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit or 31-bit addressing mode.

As part of the entry-table-lookup process, the six
leftmost bits of the entry index are compared
against the entry-table length, bits 26-31 of the
linkage-table entry, to establish whether the
addressed entry is within the table. If the value in
the entry-table length field is less than the value in
the six leftmost bits of the entry index, an
EX-translation exception is recognized.

The 16-byte or 32-byte entry-table entry is fetched
by using the real address. The fetch of the entry
appears to be word-concurrent as observed by
other CPUs, with the leftmost word fetched first.
The order in which the remaining three or seven
words are fetched is unpredictable. The fetch
access is not subject to protection. When the
storage address which is generated for fetching
the entry-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

The use that is made of the information fetched
from the entry-table entry is described in the defi-
nition of the PROGRAM CALL instruction.

Recognition of Exceptions during
PC-Number Translation

The exceptions which can be encountered during
the PC-number-translation process and their pri-
ority are described in the definition of the
PROGRAM CALL instruction.

Programming Note: The linkage-table desig-

nation is fetched successfully from the primary
ASN-second-table entry regardless of the values
of bit 0, the ASX-invalid bit, and bits 30, 31, and
60-63 in the primary ASTE. A one value of any of
these bits may cause an exception to be recog-
nized in other circumstances.

Home Address Space

Facilities are provided which a privileged program,
such as the control program, can use to obtain
control in and access the home address space of
a dispatchable unit (for example, a task).

Each dispatchable unit normally has an address
space associated with it in which the control
program keeps the principal control blocks that
represent the dispatchable unit. This address
space is called the home address space of the
dispatchable unit. Different dispatchable units
may have the same or different home address
spaces. When the control program initiates a
dispatchable unit, it may set the primary and sec-
ondary address spaces equal to the home
address space of the dispatchable unit. There-
after, because of the dispatchable unit's possible
use of the PROGRAM CALL, PROGRAM CALL
FAST, PROGRAM RETURN, PROGRAM
TRANSFER, or SET SECONDARY ASN instruc-
tion, the control program normally cannot depend
on either the primary address space or the sec-
ondary address space being the home address
space when the home address space must be
accessed, for example, during the processing by
the control program of an interruption. Therefore,
the control program normally must take some
special action to ensure that the home address
space is addressed when it must be accessed.
The home-address-space facilities provide an effi-
cient means to take this action.

The home-address-space facilities include:

¢ The home segment-table designation (HSTD)
in control register 13. The HSTD is used by
DAT in the same way as the primary
segment-table designation (PSTD) in control
register 1 and the secondary segment-table
designation (SSTD) in control register 7.

e Home-space mode, which results when DAT
is on and the address-space control, PSW bits
16 and 17, has the value 11 binary. When
the CPU is in the home-space mode, instruc-
tion and logical addresses are home virtual

addresses and are translated by DAT by
means of the HSTD.

e The ability of the RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, and SET
ADDRESS SPACE CONTROL FAST
instructions to set the home-space mode in
the supervisor state, and the ability of the
INSERT ADDRESS SPACE CONTROL
instruction to return an indication of the home-
space mode.

e The home space-switch-event control, bit O of
control register 13.

¢ Recognition of a space-switch event upon
completion of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET
ADDRESS SPACE CONTROL FAST instruc-
tion if the CPU was in the home-space mode
before or after the operation but not both
before and after the operation, if any of the
following is true: (1) the primary space-
switch-event control, bit 0 of control register 1,
is one, (2) the home space-switch-event
control is one, or (3) a PER event is to be
indicated.

The space-switch event can be used to enable or
disable PER or tracing when fetching of
instructions begins or ends in particular address
spaces.

Access-Register Introduction

Many of the functions related to access registers
are described in this section and in
[Linkage without the Linkage Stack” on page 5-9,
[‘Access-Reqister Translation” on page 5-40, and
['Sequence of Storage References” on page 5-75|
Additionally, translation modes and access-list-
controlled protection are described in
the PER-2 means of restricting storage-
alteration events to designated address spaces
and the handling of access registers during resets
and during the store-status operation are
described in [Chapter 4, “Control’} interruptions are
described in [Chapter 6, __ “Interruptions’;
instructions are described in [Chapter 7, “General
[Instructions,” and [Chapter 10, “Controll
Instructions’} the handling of access registers
during a machine-check interruption and the pro-
grammed validation of the access registers are
described in |Chapter 11, “Machine-Check|
and the alter-and-display controls for

Chapter 5. Program Execution 5-31

access registers are described in |Chapter 12
[‘Operator Facilities.”]

Summary
These major functions are provided:

¢ A maximum of 16 address spaces, including
the instruction space, for immediate and
simultaneous use by a semiprivileged
program; the address spaces are specified by
16 new registers called access registers.

¢ Instructions for examining and changing the
contents of the access registers.

In addition, control and authority mechanisms are
incorporated to control these functions.

Access registers allow a sequence of instructions,
or even a single instruction such as MOVE (MVC)
or MOVE LONG (MVCL), to operate on storage
operands in multiple address spaces, without the
requirement of changing either the translation
mode or other control information. Thus, a
program residing in one address space can use
the complete instruction set to operate on data in
that address space and in up to 15 other address
spaces, and it can move data between any and all
pairs of these address spaces. Furthermore, the
program can change the contents of the access
registers in order to access still other address
spaces.

The instructions for examining and changing
access-register contents are unprivileged and are
described in [Chapter 7, “General Instructions.’]

e COPY ACCESS

e EXTRACT ACCESS

e LOAD ACCESS MULTIPLE

e LOAD ADDRESS EXTENDED
e SET ACCESS

e STORE ACCESS MULTIPLE

The privileged PURGE ALB instruction is used in
connection with access registers and is described
in|Chapter 10, “Control Instructions.’|

Access registers specify address spaces when the
CPU is in the access-register mode. The SET
ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST instructions
allow setting of the access-register mode, and the
INSERT ADDRESS SPACE CONTROL instruction
provides an indication of the access-register

5-32 ESA/390 Principles of Operation

mode. The stackihng PROGRAM CALL,
PROGRAM CALL FAST, PROGRAM RETURN,
and RESUME PROGRAM instructions also allow
setting of the access-register mode. All of these
instructions are described in [Chapter 10, “Control|

Instructions.’

Access registers are used in a special way by the
BRANCH IN SUBSPACE GROUP instruction.
The use of access registers by that instruction is
described in detail only in the definition of the
instruction in Chapter 10, “Control Instructions.”
However, [[Subspace-Group Tables” on page 5-52|
describes the use of the dispatchable-unit control
table and the extended ASN-second-table entry by
BRANCH IN SUBSPACE GROUP.

Access-Register Functions

Access-Register-Specified Address
Spaces

The CPU includes sixteen 32-bit access registers
numbered 0-15. In the access-register mode,
which results when DAT is on and PSW bits 16
and 17 are 01 binary, an instruction B or R field
that is used to specify the logical address of a
storage operand designates not only a general
register but also an access register. The desig-
nated general register is used in the ordinary way
to form the logical address of the storage operand.
The designated access register is used to specify
the address space to which the logical address is
relative. The access register specifies the
address space by specifying a segment-table des-
ignation for the address space, and this segment-
table designation is used by DAT to translate the
logical address. An access register specifies a
segment-table designation in an indirect way, not
by containing the segment-table designation.

An access register may specify the primary or
secondary segment-table designation in control
register 1 or 7, respectively, or it may specify a
segment-table designation contained in an
ASN-second-table entry. In the latter case, the
access register designates an entry in a table
called an access list, and the designated access-
list entry in turn designates the ASN-second-table
entry.

The process of using the contents of an access
register to obtain a segment-table designation for
use by DAT is called access-register translation

(ART). This is depicted in

Instruction

| Displacement

| [e] » |

General Register
In Access-Register Mode ‘

Base Address l

Access Register l

| | e
l Logical Address
ART STD >| DAT

Real Address

Figure 5-7. Use of Access Registers

An access register is said to specify an
AR-specified address space by means of an
AR-specified segment-table designation. The
virtual addresses in an AR-specified address
space are called AR-specified virtual addresses.

In the access-register mode, whereas all storage-
operand addresses are AR-specified virtual,
instruction addresses are primary virtual.

Designating Access Registers: In the access-
register mode, an instruction B or R field desig-
nates an access register, for use in
access-register translation, under the following
conditions:

e The field is a B field which designates a
general register containing a base address.
The base address is used, along with a dis-
placement (D) and possibly an index (X), to
form the logical address of a storage operand.

e The field is an R field which designates a
general register containing the logical address
of a storage operand.

For example, consider the following instruction:
MVC 0(L,1),0(2)

The second operand, of length L, is to be moved
to the first-operand location. The logical address
of the second operand is in general register 2, and
that of the first-operand location in general register
1. The address space containing the second
operand is specified by access register 2, and that
containing the first-operand location by access

register 1. These two address spaces may be dif-
ferent address spaces, and each may be different
from the current instruction address space (the
primary address space).

When PSW bits 16 and 17 are 01, the B field of
the LOAD REAL ADDRESS instruction designates
an access register, for use in access-register
translation, regardless of whether DAT is on or off.

The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions specify storage oper-
ands by means of implicitly designated general
registers and access registers.

The MOVE TO PRIMARY and MOVE TO SEC-
ONDARY instructions specify storage operands by
means of primary virtual and secondary virtual
addresses, and access registers do not apply to
these instructions. An exception is recognized
when either of these instructions is executed in
the access-register mode. The MOVE WITH KEY
instruction can be used in place of MOVE TO
PRIMARY and MOVE TO SECONDARY in the
access-register mode. The MOVE WITH
SOURCE KEY and MOVE WITH DESTINATION
KEY instructions also can be used.

An instruction R field may designate an access
register for other than the purpose of access-
register translation.

The fields which may designate access registers,
whether or not for access-register translation, are
indicated in the summary figure at the beginning
of each instruction chapter.

Obtaining the Segment Table Designation:
This section and the following ones introduce the
access-register-translation process and present
the concepts related to access lists.

The segment-table designation specified by an
access register is obtained by access-register
translation as follows:

¢ If the access register contains 00000000 hex,
the specified segment-table designation is the
primary segment-table designation (PSTD),
obtained from control register 1.

¢ |f the access register contains 00000001 hex,
the specified segment-table designation is the
secondary segment-table designation (SSTD),
obtained from control register 7.

Chapter 5. Program Execution 5-33

e If the access register contains any other
value, the specified segment-table designation
is obtained from an ASN-second-table entry.
The contents of the access register designate
an access-list entry that contains the real
address of the ASN-second-table entry.

Access register 0 is treated in a special way by
access-register translation; it is treated as con-
taining 00000000 hex, and its actual contents are
not examined. Thus, a logical address specified
by means of a zero B or R field in the access-
register mode is always relative to the primary
address space, regardless of the contents of
access register 0. However, there is one excep-
tion to how access register O is treated: the TEST
ACCESS instruction uses the actual contents of
access register 0, instead of treating access reg-
ister 0 as containing 00000000 hex.

The treatment of an access register containing the
value 00000000 hex as designating the current
primary address space allows that address space
to be addressed, in the access-register mode,
without requiring the use of an access-list entry.
This is useful when the primary address space is
changed by a space-switching PROGRAM CALL
(PC-ss), PROGRAM CALL FAST (PCF-ss),
PROGRAM RETURN (PR-ss), or PROGRAM
TRANSFER (PT-ss) instruction. Similarly, the
treatment of an access register containing the
value 00000001 hex as designating the secondary
address space allows that space to be addressed
after a space-switching operation, again without
requiring the use of an access-list entry.

The contents of the access registers are not
changed by the PROGRAM CALL, PROGRAM
CALL FAST, and PROGRAM TRANSFER
instructions. Therefore, an access register con-
taining 00000000 or 00000001 hex may specify a
different address space after the execution of
PROGRAM CALL, PROGRAM CALL FAST, or
PROGRAM TRANSFER than before the exe-
cution. For example, if a space-switching
PROGRAM CALL instruction is executed, an
access register containing 00000000 hex specifies
the old primary address space before the exe-
cution and the new primary address space after
the execution.

When access-register translation obtains a

segment-table designation from an
ASN-second-table entry, bit 0 of the entry, the

5-34 ESA/390 Principles of Operation

ASX-invalid bit, must be zero; otherwise, an
exception is recognized.

Access Lists: The access-list entry that is desig-
nated by the contents of an access register can
be located in either one of two access lists, the
dispatchable-unit access list or the primary-space
access list. A bit in the access register specifies
which of the two access lists contains the desig-
nated entry. Both of the access lists reside in real
or absolute storage. The locations of the access
lists are specified by means of control registers 2
and 5.

Control register 2 contains the origin of a real-
storage area called the dispatchable-unit control
table. The dispatchable-unit control table contains
the designation — the real origin and length — of
the dispatchable-unit access list.

When the address-space-function (ASF) control,
bit 15 of control register 0, is one, control register
5 contains the origin of a real-storage area called
the primary ASN-second-table entry. The primary
ASN-second-table entry contains the designation
of the primary-space access list, and it also con-
tains the linkage-table designation. When the
ASF control is zero, the linkage-table designation
is in control register 5.

The ASF control determines the contents of
control register 5 for the instructions LOAD
ADDRESS SPACE PARAMETERS, PROGRAM
CALL, PROGRAM RETURN, and PROGRAM
TRANSFER. The access-register-translation
process always treats control register 5 as con-
taining the primary-ASN-second-table-entry origin
and does not examine the ASF control.

An access list, either the dispatchable-unit access
list or the primary-space access list, contains one
of the following, depending on the model:
(1) some multiple of eight 16-byte entries, up to a
maximum of 1,024 entries, or (2) some multiple of
sixteen 16-byte entries, up to a maximum of 4,096
entries.

Programs and Dispatchable Units: When dis-
cussing access lists, it is necessary to distinguish
between the terms “program” and “dispatchable
unit.” A program is a sequence of instructions and
may be referred to as a program module. A
program may be a sequence of calling and called
programs. A dispatchable unit, which is some-

times called a process or a task, is a unit of work
that is performed through the execution of a
program by one CPU at a time.

The dispatchable-unit access list is intended to be
associated with a dispatchable unit; that is, it is
intended that a dispatchable unit have the same
dispatchable-unit access list regardless of which
program is currently being executed to perform the
dispatchable unit. There is no mechanism, except
for the LOAD CONTROL instruction, that changes
the dispatchable-unit-control-table origin in control
register 2.

The primary-space access list is associated with
the primary address space that is specified by the
primary ASN in control register 4 and the primary
segment-table designation in control register 1.
The primary-space access list that is available for
use by a dispatchable unit changes as the primary
address space of the dispatchable unit changes,
that is, whenever a program in a different primary
address space begins to be executed to perform
the dispatchable unit. Whenever a LOAD
ADDRESS SPACE PARAMETERS, PROGRAM
CALL, PROGRAM CALL FAST, PROGRAM
RETURN, or PROGRAM TRANSFER instruction
replaces the primary ASN in control register 4 and
the primary segment-table designation in control
register 1, it also replaces the
primary-ASN-second-table-entry origin in control
register 5, if the address-space-function control is
one.

Thus, for a dispatchable unit, the dispatchable-unit
access list is intended to be constant (although its
entries may be changed, as will be described),
and the primary-space access list is a function of
which program is being executed, through being a
function of the primary address space of the
program. Also, all dispatchable units and pro-
grams in the same primary address space have
the same primary-space access list.

Access-List-Entry Token: The contents of an
access register are called an access-list-entry
token (ALET) since, in the general case, they des-
ignate an entry in an access list. An ALET has
the following format:

0000000 |P| ALESN ALEN

0 78 16 31

The ALET contains a primary-list bit (P) that speci-
fies which access list contains the designated
access-list entry: the dispatchable-unit access list
if the bit is zero, or the primary-space access list if
the bit is one. The specified access list is called
the effective access list.

The ALET also contains an access-list-entry
number (ALEN) which, when multiplied by 16, is
the number of bytes from the beginning of the
effective access list to the designated access-list
entry. During access-register translation, an
exception is recognized if the ALEN designates an
entry that is outside the effective access list or if
the leftmost seven bits in the ALET are not all
zeros.

The access-list-entry sequence number (ALESN)
in the ALET is described in the next section.

The above format of the ALET does not apply
when the ALET is 00000000 or 00000001 hex.

An ALET can exist in an access register, in a
general register, or in storage, and it has no
special protection from manipulation by the
problem program. Any program can transfer
ALETs back and forth among access registers,
general registers, and storage. A called program
can save the contents of the access registers in
any storage area available to it, load and use the
access registers for its own purposes, and then
restore the original contents of the access regis-
ters before returning to its caller.

Allocating and Invalidating Access-List
Entries: 1t is intended that access lists be pro-
vided by the control program and that they be pro-
tected from direct manipulation by any problem
program. This protection may be obtained by
means of key-controlled protection or by placing
the access lists in real storage not accessible by
any problem program by means of DAT.

As determined by a bit in the entry, an access-list
entry is either valid or invalid. A valid access-list
entry specifies an address space and can be used
by a suitably authorized program to access that
space. An invalid access-list entry is available for
allocation as a valid entry. It is intended that the
control program provide services that allocate
valid access-list entries and that invalidate previ-
ously allocated entries.

Chapter 5. Program Execution 5-35

Allocation of an access-list entry may consist in
the following steps. A problem program passes
some kind of identification of an address space to
the control program, and it passes a specification
of either the dispatchable-unit access list or the
primary-space access list. The control program
checks, by some means, the authority of the
problem program to access the address space. If
the problem program is authorized, the control
program selects an invalid entry in the specified
access list, changes it to a valid entry specifying
the subject address space, and returns to the
problem program an access-list-entry token
(ALET) that designates the allocated entry. The
problem program can subsequently place the
ALET in an access register in order to access the
address space. Later, through the use of the
invalidation service of the control program, the
access-list entry that was allocated may be made
invalid. An exception is recognized during access-
register translation if an ALET is used that desig-
nates an invalid access-list entry.

It may be that a particular access-list entry is allo-
cated, then invalidated, and then allocated again,
this time specifying a different address space than
the first time. To guard against erroneous use of
an ALET that designates a conceptually wrong
address space, an access-list-entry sequence
number (ALESN) is provided in both the ALET
and the access-list entry. When the control
program allocates an access-list entry, it should
place the same ALESN in the entry and in the
designating ALET that it returns to the problem
program. When the control program reallocates
an access-list entry, it should change the value of
the ALESN. An exception is recognized during
access-register translation if the ALESN in the
ALET used is not equal to the ALESN in the des-
ignated access-list entry.

The ALESN check is a reliability mechanism, not
an authority mechanism, because the ALET is not
protected from the problem program, and the
problem program can change the ALESN in the
ALET to any value. Also, this is not a fail-proof
reliability mechanism because the ALESN is one
byte and its value wraps around after 256 reallo-
cations, assuming that the value is incremented by
one for each reallocation.

Authorizing the Use of Access-List Entries:

Although an access list is intended to be associ-
ated with either a dispatchable unit or a primary

5-36 ESA/390 Principles of Operation

address space, the valid entries in the list are
intended to be associated with the different pro-
grams that are executed, in some order, to
perform the work of the dispatchable unit. It is
intended that each program be able to have a par-
ticular authority that permits the use of only those
access-list entries that are associated with the
program. The authority being referred to here is
represented by a 16-bit extended authorization
index (EAX) in control register 8. Other elements
used in the related authorization mechanism are:
(1) a private bit in the access-list entry, (2) an
access-list-entry authorization index (ALEAX) in
the access-list entry, and (3) the authority table.

A program is authorized to use an access-list
entry, in access-register translation, if any of the
following conditions is met:

1. The private bit in the access-list entry is zero.
This condition provides a high-performance
means to authorize any and all programs that
are executed to perform the dispatchable unit.

2. The ALEAX in the access-list entry is equal to
the EAX in control register 8. This condition
provides a high-performance means to
authorize only particular programs.

3. The EAX selects a secondary bit that is one in
the authority table associated with the address
space that is specified by the access-list entry.
The authority table is locatable in that the
access-list entry contains the real address of
the ASN-second-table entry (ASTE) for the
address space, and the ASTE contains the
real address of the authority table. This con-
dition provides another means, less well-
performing than condition 2, for authorizing
only particular programs. However, providing
for condition 3 to be met instead of condition 2
can be advantageous because it permits
several programs, each executed with a dif-
ferent EAX, all to use a single access-list
entry to access a particular address space.

Access-register translation tests for the three con-
ditions in the order indicated by their numbers,
and a higher-numbered condition is not tested for
if a lower-numbered condition is met. An excep-
tion is recognized if none of the conditions is met.

[Figure 5-8 on page 5-37] shows an example of
how the authorization mechanism can be used. In
the figure, “PBZ” means that the private bit is
zero, and “PBQO” means that the private bit is one.

The figure shows an access list — assume it is a
dispatchable-unit access list — in which the
entries of interest are entries 4, 7, 9, and 12.
Each access-list entry contains a private bit, an
ALEAX, and the real address of the ASTE for an
address space. The private bit in entry 4 is zero,
and, therefore, the value of the ALEAX in entry 4
is immaterial and is not shown. The private bits in
entries 7, 9, and 12 are ones, and the ALEAX
values in these entries are as shown. The
numbers used to identify the address spaces (36,
25, 62, and 17) are arbitrary. They may be the
ASNs of the address spaces; however, ASNs are
in no way used in access-register translation.
Only the authority table for address space 17 is
shown. In it, the secondary bit selected by EAX
10 is one. Assume that no secondary bits are
ones in the authority tables for the other spaces.

The figure also shows a sequence of three pro-
grams, named A, B, and C, that is executed to
perform the work of the dispatchable unit associ-
ated with the access list. These programs may be
in the same or different address spaces. The
EAX in control register 8 when each of these pro-
grams is executed is 0, 5, and 10, respectively.

Each of programs A, B, and C can use access-list

entry (ALE) 4 to access address space 36 since

Access List
| |

the private bit in ALE 4 is zero. Program B can
use ALE 7 to access space 25 because the
ALEAX in the ALE equals the EAX for the
program, and no other program can use this ALE.
Similarly, only program C can use ALE 9.
Program B can use ALE 12 because the ALEAX
and EAX are equal, and program C can use it
because C's EAX selects a secondary bit that is
one in the authority table for space 17.

The example would be the same if programs A, B,
and C were all in the same address space and the
access list were the primary-space access list for
that space.

An ALE in which the private bit is zero may be
called public because the ALE can be used by
any program, regardless of the value of the
current EAX. An ALE in which the private bit is
one may be called private because the ability of a
program to use the ALE depends on the current
EAX.

Notes on the Authorization Mechanism: An
access list is a kind of capability list, in the sense
in which the word “capability” is used in computer
science. It is up to the control program to formu-
late the policies that are used to allocate entries in
an access list, and the programmed authorization
checking required during allocation may be very

/ / ASTE for Space 36
4 PBZ —>
/ / ASTE for Space 25
7| PBO, ALEAX =5 —
/ / ASTE for Space 62
9| PBO, ALEAX = 10 —»
/ / ASTE for Space 17 Authority Table
12| PBO, ALEAX = 5 —» —|S bit selected by
EAX 10 is one.
| |
Program A Program B Program C
EAX = 0 - EAX = 5 - EAX = 10

Figure 5-8. Example of Authorizing the Use of Access-List Entries

Chapter 5. Program Execution 5-37

complex and lengthy. After a valid entry has been
made in an access list, the access-register-
translation process enforces the control-program
policies in a well-performing way by means of the
authorization mechanism described above.

Using access lists has an advantage over using
only ASNs and authority tables. For example,
assume that an access register could contain an
ASN and that access-register translation would do
ASN translation of the ASN and then use the EAX
to test the authority table. This would make the
EAX relevant to all existing address spaces, and,
therefore, it would make the management of EAXs
and their assignment to programs more difficult.
With the actual definitions of the ALET and
access-register translation, an EAX is relevant to
only the address spaces that are represented in
the current dispatchable-unit and primary-space
access lists. Also, since ASN translation is not
done as a part of access-register translation, the
number of concurrently existing address spaces,
as represented by ASN-second-table entries, can
be greater than the number of available ASNs
(64K).

The extended entry-table entry and linkage stack
can be used to assign EAXs to programs and to
change the EAX in control register 8 during
program linkages. These components are intro-

duced in [‘Linkage-Stack Introduction” on|
lbage 5-57

The SET SECONDARY ASN instruction and the
authorization index (AX), bits 0-15 of control reg-
ister 4, can play a role in the use of access regis-
ters. The space-switching form of SET
SECONDARY ASN (SSAR-ss) establishes a new
secondary address space if the secondary bit
selected by the AX is one in the authority table
associated with the new secondary space. The
secondary space can be addressed by means of
an ALET having the value 00000001 hex.

Revoking Accessing Capability: Another mech-
anism, which is a combined authority and integrity
mechanism, is part of access-register translation,
and it is described in this section.

An access-list entry (ALE) contains an
ASN-second-table-entry sequence number
(ASTESN), and so does the ASTE designated by
the ALE when the ASTE is extended to 64 bytes,

5-38 ESA/390 Principles of Operation

as it is when the address-space-function control is
one. During access-register translation, the
ASTESN in the ALE must equal the ASTESN in
the designated ASTE; otherwise, an exception is
recognized.

When the control program allocates an ALE, it
should copy the ASTESN from the designated
ASTE into the ALE. Subsequently, the control
program can, in effect, revoke the addressing
capability represented by the ALE by changing the
ASTESN in the ASTE. Changing the ASTESN in
the ASTE makes all previously usable ALEs that
designate the ASTE unusable.

Making an ALE unusable may be required in
either of two cases:

1. Some element of the control-program policy
for determining the authority of a program to
have access to the address space specified
by the ASTE has changed. This may mean
that some or all of the programs that were
authorized to the address space, and for
which ALEs have been allocated, are no
longer authorized.

Changing the ASTESN in the ASTE ends the
usability of all ALEs that designate the ASTE.
If this revocation of capability is to be selec-
tive, then, when an exception is recognized
because of unequal ASTESNSs, the control
program can reapply its programmed proce-
dures for determining authorization, and an
ALE which should have remained usable can
be made usable again by copying the new
ASTESN into it. When the usability of an ALE
is restored, the control program normally
should cause reexecution of the instruction
that encountered the exception.

2. The ASTE has been reassigned to specify a
conceptually different address space, and
ALEs which specified the old address space
must not be allowed to specify the new one.
(Bit O of the ASTE, the ASX-invalid bit, can be
set to one to delete the assignment of the
ASTE to an address space, and this prevents
the use of the ASTE in access-register trans-
lation. But after reassignment, bit 0 normally
again is zero.)

The ASTESN mechanism may be regarded as an
authority mechanism in the first case above and
as an integrity mechanism in the second.

The ASTESN mechanism is especially valuable
because it avoids the need of the control program
to keep track of the access lists that contain the
ALEs that designate each ASTE. Furthermore, it
avoids the need of searching through these
access lists in order to find the ALEs and set them
invalid, to prevent the use of the ALEs in access-
register translation. The latter activity could be
particularly time-consuming, or could present a
particularly difficult management problem, because
the access lists could be in auxiliary storage, such
as a direct-access storage device, when the need
arises to invalidate the ALEs.

The ASTESN is a four-byte field. Assuming a rea-
sonable frequency of authorization-policy changes
or address-space reassignments, the approxi-
mately four billion possible values of the ASTESN
provide a fail-proof authority or integrity mech-
anism over the lifetime of the system.

Preventing Store References: The access-list
entry contains a fetch-only bit which, when one,
specifies that the access-list entry cannot be used
to perform storage-operand store references. The
principal description of the effect of the fetch-only
bit is in [‘Access-List-Controlled Protection” on|

Improving Translation Performance: Access-
register translation (ART) conceptually occurs
each time a logical address is used to reference a
storage operand in the access-register mode. To
improve performance, ART normally is imple-
mented such that some or all of the information
contained in the ART tables (access-list-
designation sources, access lists, ASN second
tables, and authority tables) is maintained in a
special buffer referred to as the ART-lookaside
buffer (ALB). The CPU necessarily refers to an
ART-table entry in real storage only for the initial
access to that entry. The information in the entry
may be placed in the ALB, and subsequent trans-
lations may be performed using the information in
the ALB.

The PURGE ALB instruction can be used to clear
all information from the ALB after a change has
been made to an ART-table entry in real storage.

Access-Register Instructions

The following instructions are provided for exam-
ining and changing the contents of access regis-
ters:

e COPY ACCESS

e EXTRACT ACCESS

e LOAD ACCESS MULTIPLE

e LOAD ADDRESS EXTENDED
e SET ACCESS

¢ STORE ACCESS MULTIPLE

The SET ACCESS instruction replaces the con-
tents of a specified access register with the con-
tents of a specified general register. Conversely,
the EXTRACT ACCESS instruction moves the
contents of an access register to a general reg-
ister. The COPY ACCESS instruction moves the
contents of one access register to another.

The LOAD ACCESS MULTIPLE instruction loads
a specified set of consecutively numbered access
registers from a specified storage location whose
length in words equals the number of access reg-
isters loaded. Conversely, the STORE ACCESS
MULTIPLE instruction function stores the contents
of a set of access registers at a storage location.

The LOAD ADDRESS EXTENDED instruction is
similar to the LOAD ADDRESS instruction in that
it loads a specified general register with an effec-
tive address specified by means of the B, X, and
D fields of the instruction. In addition, LOAD
ADDRESS EXTENDED operates on the access
register having the same number as the general
register loaded. When the address-space control,
PSW bits 16 and 17, is 00, 10, or 11 binary,
LOAD ADDRESS EXTENDED loads the access
register with 00000000, 00000001, or 00000002
hex, respectively. When the address space
control is 01 binary, LOAD ADDRESS
EXTENDED loads the target access register with
a value that depends on the B field of the instruc-
tion. If the B field is zero, LOAD ADDRESS
EXTENDED loads the target access register with
00000000 hex. If the B field is nonzero, LOAD
ADDRESS EXTENDED loads the target access
register with the contents of the access register
designated by the B field. However, in the last
case when bits 0-6 of the access register desig-
nated by the B field are not all zeros, the results in
the target general register and access register are
unpredictable.

Chapter 5. Program Execution 5-39

The address-space-control values 00, 01, 10, and
11 binary specify primary-space, access-register,
secondary-space, and home-space mode, respec-
tively, when DAT is on. LOAD ADDRESS
EXTENDED functions the same regardless of
whether DAT is on or off.

When used in access-register translation, the
access-register values 00000000 and 00000001
hex specify the primary and secondary address
spaces, respectively, and the value 00000002 hex
designates entry 2 in the dispatchable-unit access
list. Loading the target access register with
00000002 hex when the address-space control is
11 binary is intended to support assignment, by
the control program, of entry 2 in the dispatchable-
unit access list as specifying the home address
space.

Access-Register Translation

Access-register translation is introduced in
[‘Access-Register-Specified Address Spaces” on|

Access-Register-Translation
Control

Access-register translation is controlled by an
address-space control, by the address-space-
function (ASF) control in control register 0, and by
controls in control registers 2, 5, and 8. The
address-space control, PSW bits 16 and 17, is
described in [‘Translation Modes” on page 3-28|
The other controls are described below.

Additional controls are located in the access-
register-translation tables.

Address-Space-Function Control

Bit 15 of control register 0 is the address-space-
function (ASF) control. This bit must be one when
a RESUME PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE CONTROL
FAST instruction that is to set the access-register
mode is executed, and when a BRANCH AND
SET AUTHORITY, BRANCH AND STACK,
BRANCH IN SUBSPACE GROUP, EXTRACT
STACKED REGISTERS, EXTRACT STACKED
STATE, MODIFY STACKED STATE, PROGRAM
CALL FAST, PROGRAM RETURN, or TEST
ACCESS instruction is executed; otherwise, a
special-operation exception is recognized.

5-40 ESA/390 Principles of Operation

When the ASF control is one:

e PC-number translation obtains the linkage-
table designation from the primary
ASN-second-table entry by first obtaining the
primary-ASTE origin from control register 5,
instead of obtaining the linkage-table desig-
nation from control register 5.

e PC-number translation treats the length of the
entry-table entry as changed from 16 bytes to
32 bytes.

¢ ASN translation treats the boundary alignment
and length of the ASN-second-table entry as
changed from 16 bytes to 64 bytes.

Access-register translation always treats control
register 5 as containing the primary-ASTE origin
and always treats the ASN-second-table entry
designated by an access-list entry as being 64
bytes, and, for these purposes, it does not
examine the ASF control. However, when the
ASF control is or has been zero, erroneous entries
may exist in the ART-lookaside buffer (ALB), and,
therefore, access-register translation may be per-
formed erroneously; see [‘Formation of ALB|
[Entries” on page 5-51]

Also when the ASF control is one:

¢ PROGRAM CALL with space switching may
obtain the address of an ASN-second-table
entry from the entry-table entry used, instead
of obtaining it by means of ASN translation.

¢ LOAD ADDRESS SPACE PARAMETERS,
when it performs PASN translation, and also
the space-switching forms of PROGRAM
CALL and PROGRAM TRANSFER place the
origin of the new primary ASTE in control reg-
ister 5 instead of placing a linkage-table desig-
nation in that register. (PROGRAM RETURN
requires that the ASF control be one. A
space-switching PROGRAM RETURN also
places the new primary-ASTE origin in control
register 5.)

Control Register 2

The location of the dispatchable-unit control table
is specified in control register 2. The register has
the following format:

DUCTO

Dispatchable-Unit-Control-Table Origin
(DUCTO): Bits 1-25 of control register 2, with six
zeros appended on the right, form a 31-bit real
address that designates the beginning of the
dispatchable-unit control table. Access-register
translation may obtain the dispatchable-unit
access-list designation from the dispatchable-unit
control table.

Control Register 5

The location of the primary ASN-second-table
entry is specified in control register 5. The reg-
ister has the following format:

PASTEO

0 1 26 31

Primary-ASTE Origin (PASTEO): Bits 1-25 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates
the beginning of the primary ASN-second-table
entry. Access-register translation may obtain the
primary-space access-list designation from the
primary ASTE. The primary-ASTE origin is set by
LOAD ADDRESS SPACE PARAMETERS when it
performs PASN translation and by the space-
switching forms of PROGRAM CALL, PROGRAM
CALL FAST, PROGRAM RETURN, and
PROGRAM TRANSFER. When any of these
instructions places the primary-ASTE origin in
control register 5, it also places zeros in bit posi-
tions 0 and 26-31 of control register 5.

When the ASF control is zero, LOAD ADDRESS
SPACE PARAMETERS, PROGRAM CALL, and
PROGRAM TRANSFER treat control register 5 as
containing the linkage-table designation. Access-
register translation treats control register 5 as con-
taining the primary-ASTE origin regardless of the
value of the ASF control.

When control register 5 contains the
primary-ASTE origin, bits 0 and 26-31 of the reg-
ister are subject to possible future assignment,
and they should not be depended upon to be
zeros.

Control Register 8
The extended authorization index is in control reg-
ister 8. The register has the following format:

EAX

0 16

Extended Authorization Index (EAX): Bits 0-15
of control register 8 are the extended authorization
index. During access-register translation, the EAX
may be compared against the access-list-entry
authorization index (ALEAX) in an access-list
entry, and it may be used as an index to locate a
secondary bit in an authority table. The EAX may
be set by a stacking PROGRAM CALL operation,
and it is restored by PROGRAM RETURN.

Access Registers

There are sixteen 32-bit access registers num-
bered 0-15. The contents of an access register
are called an access-list-entry token (ALET). An
ALET has the following format:

0000000 (P| ALESN ALEN

0 78 16 31

The fields in the ALET are allocated as follows:

Primary-List Bit (P): When the ALET is not
00000000 or 00000001 hex, bit 7 specifies the
access list to be used by access-register trans-
lation. When bit 7 is zero, the dispatchable-unit
access list is used; this is specified by the
dispatchable-unit access-list designation in the
dispatchable-unit control table designated by the
contents of control register 2. When bit 7 is one,
the primary-space access list is used; this is spec-
ified by the primary-space access-list designation
in the primary ASTE designated by the contents of
control register 5.

Access-List-Entry Sequence Number
(ALESN): Bits 8-15 may be used as a check on
whether the access-list entry designated by the
ALET has been invalidated and reallocated since
the ALET was obtained. During access-register
translation when the ALET is not 00000000 or
00000001 hex, bits 8-15 of the ALET are com-
pared against the access-list-entry sequence
number (ALESN) in the designated access-list
entry.

Access-List-Entry Number (ALEN): When the
ALET is not 00000000 or 00000001 hex, bits
16-31 of the ALET designate an entry in either the
dispatchable-unit access list or the primary-space

Chapter 5. Program Execution 5-41

access list, as determined by bit 7. The access-
list designation that is used is called the effective
access-list designation; it consists of the effective
access-list origin and the effective access-list
length.

During access-register translation, the ALEN, with
four zeros appended on the right, is added to the
31-bit real or absolute address specified by the
effective access-list origin, and the result is the
real or absolute address of the designated access-
list entry. The ALEN is compared against the
effective access-list length to determine whether
the designated access-list entry is within the list,
and an ALEN-translation exception is recognized if
the entry is outside the list. Although the largest
possible value of the ALEN is 65,535, an access
list can contain at most 1,024 or 4,096 entries,
depending on the model.

Bits 0-6 must be zeros during access-register
translation; otherwise, an ALET-specification
exception is recognized.

When the ALET is 00000000 or 00000001 hex, it
specifies the primary or secondary address space,
respectively, and the above format does not apply.

Access register 0 usually is treated in access-
register translation as containing 00000000 hex,
and its actual contents are not examined; the
access-register translation done as part of TEST
ACCESS is the only exception. Access register 0
is also treated as containing 00000000 hex when
it is designated by the B field of LOAD ADDRESS
EXTENDED when PSW bits 16 and 17 are 01
binary. When access register 0 is specified for
TEST ACCESS or as a source for COPY
ACCESS, EXTRACT ACCESS, or STORE
ACCESS MULTIPLE, the actual contents of the
access register are used. Access register 0, like
any other access register, can be loaded by
COPY ACCESS, LOAD ACCESS MULTIPLE,
LOAD ADDRESS EXTENDED, and SET
ACCESS.

5-42 ESA/390 Principles of Operation

Another definition of ALETs 00000000 and
00000001 hex is given in BRANCH IN SUB-
[SPACE GROUP” on page 10-12

Access-Register-Translation
Tables

When the ALET being translated is not 00000000
or 00000001 hex, access-register translation per-
forms a two-level lookup to locate first the effec-
tive access-list designation and then an entry in
the effective access list. The effective access-list
designation resides in real storage. The effective
access list resides in real or absolute storage.

Access-register translation uses an address in the
access-list entry to locate an ASN-second-table
entry, and it may perform a one-level lookup to
locate an entry in an authority table. The
ASN-second-table entry resides in real storage.
The authority table resides in real or absolute
storage.

Authority-table entries are described in
[Table Entries” on page 3-241 Access-list desig-
nations, access-list entries, and ASN-second-table
entries are described in the following sections.

Dispatchable-Unit-Control Table and
Access-List Designations

When the ALET being translated is not 00000000
or 00000001 hex, access-register translation
obtains the dispatchable-unit access-list desig-
nation if bit 7 of the ALET is zero, or it obtains the
primary-space access-list designation if bit 7 is
one. The obtained access-list designation is
called the effective access-list designation.

The dispatchable-unit access-list designation
(DUALD) is located in bytes 16-19 of a 64-byte
area called the dispatchable-unit control table
(DUCT). The DUCT resides in real storage, and
its location is specified by the DUCT origin in
control register 2.

The dispatchable-unit control table has the fol-
lowing format:

Hex Dec

0 0 BASTEO
S
4 4 |A SSASTEOQ
8 8
c 12 SSASTESN
10 16 DUALD
14 20
18 24
1c 28 (//11111111111111111
20 32 |A| Return Address
24 36 PSW Key |[PSW|R
Mask Key|A| |P
28 40
2C 44 |Trap-Control-
Block Address E
30 48
/ /

3C 60| |

Bytes 0-7 (BASTEO, SA, and SSASTEO) and
12-15 (SSASTESN) of the DUCT are described in

"Subspace-Grou Dispatchable-Unit Control
Table” on page 5-53] Bytes 32-39 (A, return
address, PSW key mask, PSW key, RA, and P)

are described in |'BRANCH AND SET
[AUTHORITY” on page 10-6] Bytes 44-47 (trap-
control-block address and E) are described in
[TRAP” on page 10-106) Bytes 8-11, 20-27,
40-43, and 48-63 are reserved for possible future
extensions and should contain all zeros. Bytes
28-31 are available for use by programming.

The primary-space access-list designation
(PSALD) is located in bytes 16-19 of a 64-byte
area called the primary ASN-second-table entry.
The primary ASTE resides in real storage, and its
location is specified by the primary-ASTE origin in
control register 5. The format of the primary
ASTE is described in
[ASN-Second-Table Entries” on page 5-45

The dispatchable-unit and primary-space access-
list designations both have the same format.

There are two possible formats of the access-list
designation, called format 0 and format 1. A
model implements one or the other of these two
formats but not both; that is, the access-list-
designation format that is available is model-
dependent, and no control is provided by which
the program can specify the format. A model pro-
vides no special indication of the format that it
implements.

The two possible formats of the access-list desig-
nation are as follows.

Format-0 Access-List Designation

Access-List Origin ALL

0 1 25 31

The fields in the format-O access-list designation
are allocated as follows:

Access-List Origin: Bits 1-24 of the format-0
access-list designation, with seven zeros
appended on the right, form a 31-bit address that
designates the beginning of the access list. This
address is treated unpredictably as either a real
address or an absolute address.

Access-List Length (ALL): Bits 25-31 of the
format-0 access-list designation specify the length
of the access list in units of 128 bytes, thus
making the length of the access list variable in
multiples of eight 16-byte entries. The length of
the access list, in units of 128 bytes, is one more
than the value in bit positions 25-31. The access-
list length, with six zeros appended on the left, is
compared against bits 0-12 of an access-list-entry
number (bits 16-28 of an access-list-entry token)
to determine whether the access-list-entry number
designates an entry in the access list.

Bit 0 is reserved for a possible future extension
and should be zero.

Format-1 Access-List Designation

Access-List Origin ALL

0 1 24 31

The fields in the format-1 access-list designation
are allocated as follows:

Chapter 5. Program Executon 5-43

Access-List Origin: Bits 1-23 of the format-1
access-list designation, with eight zeros appended
on the right, form a 31-bit address that designates
the beginning of the access list. This address is
treated unpredictably as either a real address or
an absolute address.

Access-List Length (ALL): Bits 24-31 of the
format-1 access-list designation specify the length
of the access list in units of 256 bytes, thus
making the length of the access list variable in
multiples of sixteen 16-byte entries. The length of
the access list, in units of 256 bytes, is one more
than the value in bit positions 24-31. The access-
list length, with four zeros appended on the left, is
compared against bits 0-11 of an access-list-entry
number (bits 16-27 of an access-list-entry token)
to determine whether the access-list-entry number
designates an entry in the access list.

Bit 0 is reserved for a possible future extension
and should be zero.

Programming Note: The maximum number of
access-list entries allowed by a format-0 or
format-1 access-list designation is 1,024 or 4,096,
respectively. There are two access lists available
for use at any time. Therefore, if a model imple-
ments the format-0 access-list designation, a
maximum of 2,048 2G-byte address spaces can
be addressable without control-program inter-
vention, which is a total of 4T bytes; and if a
model implements the format-1 access-list desig-
nation, a maximum of 8,192 2G-byte address
spaces can be addressable without control-
program intervention, which is a total of 16T bytes.

Access-List Entries

The effective access list is the dispatchable-unit
access list if bit 7 of the ALET being translated is
zero, or it is the primary-space access list if bit 7
is one. The entry fetched from the effective
access list is 16 bytes in length and has the fol-
lowing format;

F
I O[P| ALESN ALEAX
061 678 16 31
32 63

5-44 ESA/390 Principles of Operation

ASTE Address

64 90 95

ASTESN

96 127

The fields in the access-list entry are allocated as
follows:

ALEN-Invalid Bit (I): Bit 0, when zero, indicates
that the access-list entry specifies an address
space. When bit 0 is one during access-register
translation, an ALEN-translation exception is
recognized.

Fetch-Only Bit (FO): Bit 6 controls which types
of operand references are permitted to the
address space specified by the access-list entry.
When bit 6 is zero, both fetch-type and store-type
references are permitted. When bit 6 is one, only
fetch-type references are permitted, and an
attempt to store causes a protection exception for
access-list-controlled protection to be recognized
and the operation to be suppressed.

Private Bit (P): Bit 7, when zero, specifies that
any program is authorized to use the access-list
entry in access-register translation. When bit 7 is
one, authorization is determined as described for
bits 16-31.

Access-List-Entry Sequence Number
(ALESN): Bits 8-15 are compared against the
ALESN in the ALET during access-register trans-
lation. Inequality causes an ALE-sequence excep-
tion to be recognized. It is intended that the
control program change bits 8-15 each time it real-
locates the access-list entry.

Access-List-Entry Authorization Index
(ALEAX): Bits 16-31 may be used to determine
whether the program for which access-register
translation is being performed is authorized to use
the access-list entry. The program is authorized if
any of the following conditions is met:

1. Bit 7 is zero.

2. Bits 16-31 are equal to the extended authori-
zation index (EAX) in control register 8.

3. The EAX selects a secondary bit that is one in
the authority table for the specified address
space.

An extended-authority exception is recognized if
none of the conditions is met.

ASN-Second-Table-Entry (ASTE) Address: Bits
65-89, with six zeros appended on the right, form
the 31-bit real address of the ASTE for the speci-
fied address space. Access-register translation
obtains the segment-table designation for the
address space from the ASTE.

ASTE Sequence Number (ASTESN): Bits
96-127 may be used to revoke the addressing
capability represented by the access-list entry.
Bits 96-127 are compared against an ASTE
sequence number (ASTESN) in the designated
ASTE during access-register translation.

Bits 1-5, 32-64, and 90-95 are reserved for pos-
sible future extensions and should be zeros.

In both the dispatchable-unit access list and the
primary-space access list, access-list entries 0
and 1 are intended not to be used in access-
register translation. Bits 1-127 of access-list entry
0 and bits 1-63 of access-list entry 1 are reserved
for possible future extensions and should be
zeros. Bit 0 of access-list entries 0 and 1, and
bits 64-127 of access-list entry 1, are available for
use by programming. The control program should
set bit 0 of access-list entries 0 and 1 to one in
order to prevent the use of these entries by
means of ALETs in which the ALEN is O or 1.

Extended ASN-Second-Table Entries
When the ASF control is one, the length of each
entry in the ASN second table is extended from 16
bytes to 64 bytes when the table is used in ASN
translation. Also, the ASN second table begins on
a 64-byte boundary instead of a 16-byte boundary.
Access-register translation, which does not involve
ASN translation, always treats the
ASN-second-table entry as being 64 bytes on a
64-byte boundary, and access-register translation
does not examine the ASF control. The first 32
bytes of the 64-byte ASTE have the following
format:

I ATO 0(B

0 1 30 31

AX ATL 0000
32 48 60 63
| STD |
X STO G|P[S| STL
64 84 86 89 95
| LTD |
) LTO LTL
96 121 127

——Format-0 ALD———
ALO ALL

128 153 159

——Format-1 ALD————

ALO ALL
128 152 159
ASTESN
160 191
192 223

Ty
224 255

The fields in bit positions 0-127 of the ASTE are
defined with respect to certain mechanisms and
instructions in FASN-Second-Table Entries” on|

[page 3-19 The fields in the ASTE are defined
with respect to the BRANCH IN SUBSPACE
GROUP instruction in [‘'Subspace-Group|
[ASN-Second-Table Entries” on page 5-54 With
respect to access-register translation only, and
only for an instruction other than BRANCH IN
SUBSPACE GROUP, the fields in the ASTE are
allocated as follows:

Chapter 5. Program Execution 5-45

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is avail-
able. When bit 0 is zero, access-register trans-
lation proceeds. When the bit is one, an
ASTE-validity exception is recognized.

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, form a 31-bit
address that designates the beginning of the
authority table. This address is treated unpredict-
ably as either a real address or an absolute
address, although it is treated as a real address
for ASN authorization. The authority table is
accessed in access-register translation only if the
private bit in the access-list entry is one and the
access-list-entry authorization index (ALEAX) in
the access-list entry is not equal to the extended
authorization index (EAX) in control register 8.

Base-Space Bit (B): Bit 31 is ignored during
access-register translation if the subspace-group
facility is installed and the ASF control is one. If
the subspace-group facility is not installed or the
ASF control is zero, bit 31 must be zero; other-
wise, an ASN-translation-specification exception
may be recognized. Bit 31 is further described in
“Subspace-Group ASN-Second-Table Entries” on|

Eaﬁe 5-5§|.

Authorization Index (AX): Bits 32-47 are not
used in access-register translation.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular EAX is within the authority table.
An extended-authority exception is recognized if
the entry is not within the table.

Segment-Table Designation (STD): Bits 65-95
are obtained as the result of access-register trans-
lation and are used by DAT to translate the logical
address for the storage-operand reference being
made. Bit 64, the space-switch-event control, is
not used in or as a result of access-register trans-
lation.

Linkage-Table Designation (LTD): Bits 96-127
are not used in access-register translation.

5-46 ESA/390 Principles of Operation

Access-List Designation (ALD): When this
ASTE is designated by the primary-ASTE origin in
control register 5, bits 128-159 are the primary-
space access-list designation (PSALD). During
access-register translation when the primary-list
bit, bit 7, in the ALET being translated is one, the
PSALD is the effective access-list designation.
The PSALD is a format-O ALD or a format-1 ALD,
depending on the model.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control
revocation of the accessing capability represented
by access-list entries that designate the ASTE.
During access-register translation, bits 160-191
are compared against the ASTESN in the access-
list entry, and inequality causes an
ASTE-sequence exception to be recognized. It is
intended that the control program change the
value of bits 160-191 when the authorization poli-
cies for the address space specified by the ASTE
change or when the ASTE is reassigned to specify
another address space.

Bits 30, 31, and 60-63 must be zeros during
access-register translation if the authority table is
to be accessed; otherwise, an ASN-translation-
specification exception may be recognized.

Bits 84, 85, 128, and 192-223 are reserved for
possible future extensions and should be zeros.
Bits 224-255 are available for use by program-
ming. The second 32 bytes of the 64-byte ASTE
also are reserved for possible future extensions
and should contain all zeros.

Access-Register-Translation
Process

This section describes the access-register-
translation process as it is performed during a
storage-operand reference in the access-register
mode. LOAD REAL ADDRESS when PSW bits
16 and 17 are 01 binary, TEST ACCESS in any
translation mode, and TEST PROTECTION in the
access-register mode, perform access-register
translation the same as described here, except
that the following exceptions cause a setting of the
condition code instead of being treated as
program-interruption conditions:

e ALET specification
e ALEN translation
e ALE sequence
ASTE validity

e ASTE sequence
e Extended authority

BRANCH IN SUBSPACE GROUP performs
access-register translation as described in
‘BRANCH IN SUBSPACE _GROUP” _ on|
page 10-12|

Access-register translation operates on the access
register designated in a storage-operand reference
in order to obtain a segment-table designation for
use by DAT. When one of access-registers 1-15
is designated, the access-list-entry token (ALET)
that is in the access register is used to obtain the
segment-table designation. When access register
0 is designated, an ALET having the value
00000000 hex is wused, except that TEST
ACCESS uses the actual contents of access reg-
ister 0.

When the ALET is 00000000 or 00000001 hex,
the primary or secondary segment-table desig-
nation, respectively, is obtained.

When the ALET is other than 00000000 or
00000001 hex, the leftmost seven bits of the
ALET are checked for zeros, the primary-list bit in
the ALET and the contents of control register 2 or
5 are used to obtain the effective access-list des-
ignation, and the access-list entry number (ALEN)
in the ALET is used to select an entry in the effec-
tive access list.

The access-list entry is checked for validity and for
containing the correct access-list-entry sequence
number (ALESN).

The ASN-second-table entry (ASTE) addressed by
the access-list entry is checked for validity and for
containing the correct ASN-second-table-entry
sequence number (ASTESN).

Whether the program is authorized to use the
access-list entry is determined through the use of
one or more of: (1) the private bit and access-list-
entry authorization index (ALEAX) in the access-
list entry, (2) the extended authorization index
(EAX) in control register 8, and (3) an entry in the
authority table addressed by the
ASN-second-table entry.

If a store-type reference is to be performed, the
fetch-only bit in the access-list entry is checked for
being zero.

When no exceptions are recognized, the segment-
table designation in the ASN-second-table entry is
obtained.

In order to avoid the delay associated with refer-
ences to real or absolute storage, the information
fetched from real or absolute storage normally is
also placed in a special buffer, the ART-lookaside
buffer (ALB), and subsequent translations
involving the same information may be performed
by using the contents of the ALB. The operation
of the ALB is described in ['ART-Lookaside Buffer’|
on page 5-51

Whenever access to real or absolute storage is
made during access-register translation for the
purpose of fetching an entry from an access-list-
designation source, access list, ASN second table,
or authority table, key-controlled protection does
not apply.

The principal features of access-register trans-
lation, including the effect of the ALB, are shown
in |Figure 5-9 on page 5-48]

Selecting the Access-List-Entry Token
When one of access registers 1-15 is designated,
or for the access register designated by the R:
field of TEST ACCESS, access-register translation
uses the access-list-entry token (ALET) that is in
the access register. When access register 0 is
designated, except for TEST ACCESS, an ALET
having the value 00000000 hex is used, and the
contents of access register 0 are not examined.

Obtaining the Primary or Secondary
Segment-Table Designation

When the ALET being translated is 00000000 hex,
the primary segment-table designation in control
register 1 is obtained. @ When the ALET s
00000001 hex, the secondary segment-table des-
ignation in control register 7 is obtained. In each
of these two cases, access-register translation is
completed.

Checking the First Byte of the ALET

When the ALET being translated is other than
00000000 or 00000001 hex, bits 0-6 of the ALET
are checked for being all zeros. If bits 0-6 are not
all zeros, an ALET-specification exception is
recognized, and the operation is suppressed.

Chapter 5. Program Execution 5-47

Access-List Designation ALET in Access Register Control Register 1

' l ALO ‘ALL ' l ‘P'ALESN' ALEN l l PSTD l
]

l Control Register 7
Access List l SSTD l
F
I|0|P|ALESN|ALEAX ASTE Addr.| ASTESN
vy
=0 if =0? »| =7 |«
store?
CR 8
EAX
ASN-Second-Table Entry
/
'Il ATO ‘ l ATL ' STD ‘ ' ASTESN l
' /
(x 4)
l v v
(x 1/4)
Authority Table
_.
Obtained STD
Explanation:

The appropriate ALD is obtained:
When P in the ALET is zero (and the ALET is not zero or one), the DUALD in the DUCT is obtained.

When P in the ALET is one, the PSALD in the primary ASTE is obtained.

Information, which may include the ALD-source origin, ALET, ALO, and EAX, is used to search
the ALB. This information, along with information from the ALE, ASTE, and ATE, may be
placed in the ALB.

When the ALET is zero, the PSTD in CR 1 is obtained.
When the ALET is one, the SSTD in CR 7 is obtained.
When the ALET is Targer than one:
If a match exists, the STD from the ALB is used.
If no match exists, tables from real or absolute storage are fetched. The resulting STD from the
ASTE is obtained, and entries may be formed in the ALB.

The appropriate STD is obtained:
3

Figure 5-9. Access-Register Translation

5-48 ESA/390 Principles of Operation

Obtaining the Effective Access-List
Designation

The primary-list bit, bit 7, in the ALET is used to
perform a lookup to obtain the effective access-list
designation. When bit 7 is zero, the effective ALD
is the dispatchable-unit ALD located in bytes
16-19 of the dispatchable-unit control table
(DUCT). When bit 7 is one, the effective ALD is
the primary-space ALD located in bytes 16-19 of
the primary ASN-second-table entry (primary
ASTE).

When bit 7 is zero, the 31-bit real address of the
dispatchable-unit ALD is obtained by appending
six zeros on the right to the DUCT origin, bits 1-25
of control register 2, and adding 16. The addition
cannot cause a carry into bit position 0.

When bit 7 is one, the 31-bit real address of the
primary-space ALD is obtained by appending six
zeros on the right to the primary-ASTE origin, bits
1-25 of control register 5, and adding 16. The
addition cannot cause a carry into bit position 0.

The obtained 31-bit real address is used to fetch
the effective ALD—either the dispatchable-unit
ALD or the primary-space ALD, depending on bit
7 of the ALET. The fetch of the effective ALD
appears to be word-concurrent, as observed by
other CPUs, and is not subject to protection.
When the storage address that is generated for
fetching the effective ALD refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed. When the primary-space
ALD is fetched, bit 0, the ASX-invalid bit, and bits
30, 31, and 60-63 in the primary ASTE are
ignored.

Access-List Lookup

A lookup in the effective access list is performed.
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET is zero, or it is the
primary-space access list if bit 7 is one. The
effective access list is treated unpredictably as
being in either real or absolute storage.

The access-list-entry-number (ALEN) portion of
the ALET is used to select an entry in the effective
access list. If the format-0 ALD is implemented,
the real or absolute address of the access-list
entry is obtained by appending seven zeros on the
right to bits 1-24 of the effective ALD and adding
the ALEN to this value. If the format-1 ALD is

/

implemented, the real or absolute address of the
access-list entry is obtained by appending eight
zeros on the right to bits 1-23 of the effective ALD
and adding the ALEN to this value. For these
additions, the ALEN is extended with four right-
most zeros and 11 leftmost zeros. In either case,
when a carry into bit position 0 occurs during the
addition, an addressing exception may be recog-
nized, or the carry may be ignored, causing the
access list to wrap from 231 - 1 to zero. The
result is a 31-bit real or absolute address.

As part of the access-list-lookup process if the
format-0 ALD is implemented, the leftmost 13 bits
of the ALEN are compared against the effective
access-list length, bits 25-31 of the effective ALD,
to establish whether the addressed entry is within
the access list. For this comparison, the access-
list length is extended with six leftmost zeros. If
the value formed from the access-list length is
less than the value in the 13 leftmost bits of the
ALEN, an ALEN-translation exception is recog-
nized, and the operation is nullified. If the
format-1 ALD is implemented, the leftmost 12 bits
of the ALEN are compared against bits 24-31 of
the effective ALD. For this comparison, the
access-list length is extended with four leftmost
zeros. If the value formed from the access-list
length is less than the value in the 12 leftmost bits
of the ALEN, an ALEN-translation exception is
recognized, and the operation is nullified.

The 16-byte access-list entry is fetched by using
the real or absolute address. The fetch of the
entry appears to be word-concurrent as observed
by other CPUs, with the leftmost word fetched

first. The order in which the remaining three
words are fetched is unpredictable. The fetch
access is not subject to protection. When the

storage address that is generated for fetching the
access-list entry refers to a location which is not
available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit 0 of the access-list entry indicates whether the
access-list entry specifies an address space by
designating an ASN-second-table entry. This bit
is inspected, and, if it is one, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

When bit 0 is zero, the access-list-entry sequence
number (ALESN) in bit positions 8-15 of the

5-49

Chapter 5. Program Execution

access-list entry is compared against the ALESN
in the ALET to determine whether the ALET desig-
nates the conceptually correct access-list entry.
Inequality causes an ALE-sequence exception to
be recognized and the operation to be nullified.

Locating the ASN-Second-Table Entry

The ASN-second-table-entry (ASTE) address in
the access-list entry is used to locate the ASTE.
Bits 65-89 of the access-list entry, with six zeros
appended on the right, form the 31-bit real
address of the ASTE.

The 64-byte ASTE is fetched by using the real
address. The fetch of the entry appears to be
word-concurrent as observed by other CPUs, with
the leftmost word fetched first. The order in which
the remaining words are fetched is unpredictable.
The fetch access is not subject to protection.
When the storage address that is generated for
fetching the ASTE refers to a location which is not
available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit O of the ASTE indicates whether the ASTE
specifies an address space. This bit is inspected,
and, if it is one, an ASTE-validity exception is
recognized, and the operation is nullified.

When bit 0 is zero, the ASTE sequence number
(ASTESN) in bit positions 160-191 of the ASTE is
compared against the ASTESN in bit positions
96-127 of the access-list entry to determine
whether the addressing capability represented by
the access-list entry has been revoked. Inequality
causes an ASTE-sequence exception to be recog-
nized and the operation to be nullified.

Authorizing the Use of the Access-List
Entry

The private bit, bit 7, in the access-list entry is
used to determine whether the program is author-
ized to use the access-list entry. The access-list-
entry authorization index (ALEAX) in bit positions
16-31 of the access-list entry, the extended
authorization index (EAX) in bit positions 0-15 of
control register 8, and the authority table desig-
nated by the ASTE may also be used.

5-50 ESA/390 Principles of Operation

When the private bit is zero, the program is
authorized, and the authorization step of access-
register translation is completed.

When the private bit is one but the ALEAX is
equal to the EAX, the program is authorized, and
the authorization step of access-register trans-
lation is completed.

When the private bit is one and the ALEAX is not
equal to the EAX, bits 30, 31, and 60-63 of the
ASTE must be zeros; otherwise, an
ASN-translation-specification exception may be
recognized, which would cause the operation to
be suppressed. A one value of bit 31 does not
cause an exception to be recognized if the
subspace-group facility is installed and the ASF
control is one.

When the private bit is one and the ALEAX is not
equal to the EAX, a process called the extended-
authorization process is performed. Extended
authorization uses the EAX to select an entry in
the authority table designated by the ASTE, and it
tests the secondary-authority bit in the selected
entry for being one. The program is authorized if
the tested bit is one.

Extended authorization is the same as the
secondary-ASN-authorization process described
infFASN_Authorization™ on page 3-23 , except as
follows:

e The authority-table origin is treated as a real
or absolute address instead of as a real
address.

¢ The EAX in control register 8 is used instead
of the authorization index (AX) in control reg-
ister 4.

¢ When the value in bit positions 0-11 of the
EAX is greater than the authority-table length
(ATL) in the ASTE, an extended-authority
exception is recognized instead of a
secondary-authority exception. The operation
is nullified if the extended-authority exception
is recognized.

When the private bit is one, the ALEAX is not
equal to the EAX, and the secondary bit in the
authority-table entry selected by the EAX is not
one, an extended-authority exception is recog-
nized, and the operation is nullified.

Checking for Access-List-Controlled
Protection

If a store-type reference is to be performed and
the fetch-only bit, bit 6, in the access-list entry is
one, a protection exception is recognized, and the
operation is suppressed.

Obtaining the Segment-Table

Designation from the

ASN-Second-Table Entry

When the ALET being translated is other than
00000000 or 00000001 hex and no exception is
recognized in the steps described above, access-
register translation obtains the segment-table des-
ignation from bit positions 65-95 of the ASTE. Bit
64 of the ASTE, the space-switch-event control, is
ignored.

Recognition of Exceptions during
Access-Register Translation

The exceptions which can be encountered during
the access-register-translation process and their
priority are shown in the section “Access
Exceptions” in Chapter 6, “Interruptions.”

Programming Note: When updating an access-
list entry or ASN-second-table entry, the program
should change the entry from invalid to valid (set
bit 0 of the entry to zero) as the last step of the
updating. This ensures, because the leftmost
word is fetched first, that words of a partially
updated entry will not be fetched.

ART-Lookaside Buffer

To enhance performance, the access-register-
translation (ART) mechanism normally is imple-
mented such that access-list designations and
information specified in access lists, ASN second
tables, and authority tables are maintained in a
special buffer, referred to as the ART-lookaside
buffer (ALB). Access-list designations, access-list
entries, ASN-second-table entries, and authority-
table entries are collectively referred to as
ART-table entries. The CPU necessarily refers to
an ART-table entry in real or absolute storage only
for the initial access to that entry. The information
in the entry may be placed in the ALB, and subse-
guent ART operations may be performed using
the information in the ALB. The presence of the
ALB affects the ART process to the extent that a
modification of an ART-table entry in real or abso-
lute storage does not necessarily have an imme-

diate effect, if any, on the translation. In a
multiple-CPU configuration, each CPU has its own
ALB.

Entries within the ALB are not explicitly address-
able by the program.

Information is not necessarily retained in the ALB
under all conditions for which such retention is
possible. Furthermore, information in the ALB
may be cleared under conditions additional to
those for which clearing is mandatory.

ALB Structure

The description of the logical structure of the ALB
covers the implementation by all systems oper-
ating as defined by ESA/390. The ALB entries
are considered as being of four types: ALB
access-list designations (ALB ALDs), ALB access-
list entries (ALB ALEs), ALB ASN-second-table
entries (ALB ASTEs), and ALB authority-table
entries (ALB ATEs). An ALB entry is considered
as containing within it both the information
obtained from the ART-table entry in real or abso-
lute storage and the attributes used to fetch the
ART-table entry from real or absolute storage.
There is not an indication in an ALB ALD of
whether the ALD-source origin used to select the
ALD in real storage was the dispatchable-unit-
control-table origin or the primary-ASTE origin.

Formation of ALB Entries

The formation of ALB entries and the effect of any
manipulation of an ART-table entry in real storage
by the program depend on whether the ART-table
entry is attached to a particular CPU and on
whether the entry is valid.

The attached state of an ART-table entry denotes
that the CPU to which the entry is attached can
attempt to use the entry for access-register trans-
lation. The ART-table entry may be attached to
more than one CPU at a time.

An access-list entry or ASN-second-table entry is
valid when the invalid bit associated with the entry
is zero. Access-list designations and authority-
table entries have no invalid bit and are always
valid. The primary-space access-list designation
is valid regardless of the value of the invalid bit in
the primary ASTE.

An ART-table entry may be placed in the ALB
whenever the entry is attached and valid.

Chapter 5. Program Execution 5-51

An access-list designation is attached to a CPU
when the designation is within the dispatchable-
unit control table specified by the dispatchable-
unit-control-table origin in control register 2 or is
within the primary ASTE specified by the
primary-ASTE origin in control register 5. Control
register 5 is considered to contain the
primary-ASTE origin regardless of the value of the
address-space-function (ASF) control, bit 15 of
control register 0; however, see the note below.

An access-list entry is attached to a CPU when
the entry is within the access list specified by
either an ALB ALD or an attached ALD.

An ASN-second-table entry is attached to a CPU
when it is designated by the ASTE address in
either an ALB ALE or an attached and valid ALE.

An authority-table entry is attached to a CPU
when it is within the authority table designated by
either an ALB ASTE or an attached and valid
ASTE.

Note: During the execution of a PROGRAM
CALL, PROGRAM TRANSFER, or LOAD
ADDRESS SPACE PARAMETERS instruction that
loads control register 5 when the ASF control is
zero, an unpredictable access-list-designation
(ALD) may be placed in the ALB. This unpredict-
able ALB ALD may then be used at any time to
place other entries (ALE, ASTE, and ATE) in the
ALB. If access-register translation uses any of
these erroneous ALB entries, the results are
unpredictable. These specific erroneous entries
are removed from the ALB either by clearing the
entire ALB or by the execution of (1) a
PROGRAM CALL, PROGRAM CALL FAST,
PROGRAM RETURN, PROGRAM TRANSFER, or
LOAD ADDRESS SPACE PARAMETERS instruc-
tion that loads control register 5 when the ASF
control is one, or (2) a LOAD CONTROL instruc-
tion that loads control register 5, regardless of the
value of the ASF control.

Modification of ART Tables

When an attached but invalid ART-table entry is
made valid, or when an unattached but valid
ART-table entry is made attached, and no entry
formed from the ART-table entry is already in the
ALB, the change takes effect no later than the end
of the current instruction.

5-52 ESA/390 Principles of Operation

When an attached and valid ART-table entry is
changed, and when, before the ALB is cleared of
copies of that entry, an attempt is made to
perform ART requiring that entry, unpredictable
results may occur, to the following extent. The
use of the new value may begin between
instructions or during the execution of an instruc-
tion, including the instruction that caused the
change. Moreover, until the ALB is cleared of
copies of the entry, the ALB may contain both the
old and the new values, and it is unpredictable
whether the old or new value is selected for a par-
ticular ART operation. If the old and new values
are used as representations of effective space
designations, failure to recognize that the effective
space designations are the same may occur, with
the result that operand overlap may not be recog-
nized. Effective space designations and operand
overlap are discussed in [‘Interlocks within a Single|
[Instruction” on page 5-77.

When LOAD ACCESS MULTIPLE or LOAD
CONTROL changes the parameters associated
with ART, the values of these parameters at the
start of the operation are in effect for the duration
of the operation.

All entries are cleared from the ALB by the exe-
cution of PURGE ALB and SET PREFIX and by
CPU reset.

Subspace Groups

The subspace-group facility provides the BRANCH
IN SUBSPACE GROUP instruction, new allo-
cations of fields in the segment-table designation,
dispatchable-unit control table, and extended
ASN-second-table entry, and new operations,
called subspace-replacement operations, of the
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS
instructions. BRANCH IN SUBSPACE GROUP is
introduced in [‘Subroutine Linkage without the|
[Linkage Stack” on page 5-9 hnd described in
detail in FBRANCH IN_SUBSPACE GROUP" on]

Subspace-Group Tables

This section describes the wuse of the
dispatchable-unit control table and
ASN-second-table entry by the subspace-group
facility.

Subspace-Group Dispatchable-Unit
Control Table

The first 32 bytes of the 64-byte dispatchable-unit
control table have the following format when the
subspace-group facility is installed:

Hex Dec
0 0 BASTEOQ
S
4 4 |A SSASTEO
8 8
c 12 SSASTESN
10 16 DUALD
14 20
18 24
1C 28 |//11111111111111111

The fields in the dispatchable-unit control table are
allocated as follows:

Base-ASTE Oirigin (BASTEO): Bits 1-25 of
bytes 0-3, with six zeros appended on the right,
form a 31-bit real address that designates the
beginning of the ASN-second-table entry that
specifies the base space of a subspace group
associated with the dispatchable unit. A compar-
ison of bits 1-25 of bytes 0-3 to the primary-ASTE
origin (PASTEO) in control register 5 is made by
BRANCH IN SUBSPACE GROUP to determine
whether the current primary address space is in
the subspace group for the current dispatchable
unit. For this comparison, either bits 1-25 may be
compared to the PASTEO or the entire contents of
bytes 0-3 may be compared to the entire contents
of control register 5. A comparison of bits 1-25 of
bytes 0-3 to the destination-ASTE origin
(DASTEO) obtained from an access-list entry by
access-register translation of an ALET other than
ALETs 0 and 1 is made by BRANCH IN SUB-
SPACE GROUP to determine if the destination
ASTE is the base-space ASTE. For this compar-
ison, either bits 1-25 may be compared to the
DASTEO or the entire contents of bytes 0-3 may
be compared to the DASTEO with one leftmost
and six rightmost zeros appended. A comparison
of bits 1-25 of bytes 0-3 to an ASTE origin
(ASTEO) obtained by ASN translation may be
made by PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,

and LOAD ADDRESS SPACE PARAMETERS.
For this comparison, either bits 1-25 may be com-
pared to the ASTEO or the entire contents of
bytes 0-3 may be compared to the ASTEO with
one leftmost and six rightmost zeros appended.
When BRANCH IN SUBSPACE GROUP uses
ALET 0, bits 1-25 of bytes 0-3, with six zeros
appended on the right, designate the destination
ASTE.

Subspace-Active Bit (SA): Bit 0 of bytes 4-7
indicates, when one, that the last BRANCH IN
SUBSPACE GROUP instruction executed for the
dispatchable unit transferred control to a subspace
of the subspace group associated with the
dispatchable unit. Bit O being zero indicates any
one of the following: the last BRANCH IN SUB-
SPACE GROUP instruction executed for the
dispatchable unit transferred control to the base
space of the subspace group, BRANCH IN SUB-
SPACE GROUP has not yet been executed for
the dispatchable unit, or the dispatchable unit is
not associated with a subspace group. BRANCH
IN SUBSPACE GROUP sets bit 0 of bytes 4-7 to
one when it transfers control to a subspace of the
subspace group associated with the dispatchable
unit, and it sets bit O to zero when it transfers
control to the base space of the subspace group.

Subspace-ASTE Origin (SSASTEO): Bits 1-25
of bytes 4-7, with six zeros appended on the right,
form a 31-bit real address that designates the
beginning of the ASN-second-table entry that
specifies the subspace last given control by a
BRANCH IN SUBSPACE GROUP instruction exe-
cuted for the dispatchable unit. When BRANCH
IN SUBSPACE GROUP transfers control to a sub-
space by means of an ALET other than ALET 1, it
places the ASTEO for the subspace (the destina-
tion ASTEO) in bit positions 1-25 of bytes 4-7,
places zeros in bit positions 26-31 of bytes 4-7,
and sets the subspace-active bhit, bit 0 of bytes
4-7, to one. When BRANCH IN SUBSPACE
GROUP uses ALET 1 to transfer control to a sub-
space, bits 1-25 of bytes 4-7, with six zeros
appended on the right, designate the destination
ASTE, and BRANCH IN SUBSPACE GROUP sets
the subspace-active bit to one and either sets bits
26-31 of bytes 4-7 to zeros or leaves those bits
unchanged. However, if bits 1-25 are all zeros, a
special-operation exception is recognized. When
BRANCH IN SUBSPACE GROUP transfers
control to the base space of the subspace group,
it sets the subspace-active bit to zero, and bits

Chapter 5. Program Execution 5-53

1-31 of bytes 4-7 remain unchanged. Bits 1-25 of
bytes 4-7 may be used by PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS to set bits 1-23 and 25-31
of the primary STD in control register 1 or the sec-
ondary STD in control register 7 from the same
bits of the STD in the subspace ASTE.

Subspace-ASTE Sequence Number
(SSASTESN): Bytes 12-15 may be used to
revoke the linkage capability represented by the
SSASTEO, bits 1-25 of bytes 4-7, in the DUCT.
When BRANCH IN SUBSPACE GROUP transfers
control to a subspace by means of an ALET other
than ALET 1, it obtains the ASTESN in the sub-
space ASTE and places it in bytes 12-15. When
BRANCH IN SUBSPACE GROUP uses ALET 1 to
transfer control to a subspace, it compares bytes
12-15 to the ASTESN in the subspace ASTE, and
it recognizes an ASTE-sequence exception if they
are unequal. When the SSASTEO is used by
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS to
set bits 1-23 and 25-31 of the primary STD in
control register 1 or the secondary STD in control
register 7 from the same bits of the STD in the
subspace ASTE, those instructions first compare
bytes 12-15 to the ASTESN in the subspace
ASTE, and they recognize an ASTE-sequence
exception if the two fields are unequal.

Bytes 16-19 are described in [‘Dispatchable-Unit-
[Control_Table and Access-List Designations” on
[page 5-42 Bytes 32-39 are described in
['BRANCH AND SET AUTHORITY” on page 10-6|
Bytes 44-47 are described in
[page 10-106, Bytes 8-11, 20-27, 40-43, and
48-63 are reserved for possible future extensions
and should contain all zeros. Bytes 28-31 are
available for use by programming.

Subspace-Group ASN-Second-Table
Entries

When the ASF control is one, the length of each
entry in the ASN second table is extended from 16
bytes to 64 bytes when the table is used in ASN
translation. Also, the ASN second table begins on
a 64-byte boundary instead of a 16-byte boundary.
Access-register translation, which does not involve
ASN translation, always treats the
ASN-second-table entry as being 64 bytes on a
64-byte boundary, and access-register translation

5-54 ESA/390 Principles of Operation

does not examine the ASF control. BRANCH IN
SUBSPACE GROUP requires that the ASF control
be one. The first 32 bytes of the 64-byte ASTE
have the following format:

I ATO 0(B
0 1 30 31
AX ATL 0000
32 48 60 63
| STD |
X STO G|P[S| STL
64 84 86 89 95
| LTD |
) LTO LTL
96 121 127

———Format-0 ALD—————
ALO ALL

128 153 159

————Format-1 ALD————

ALO ALL
128 152 159
ASTESN
160 191
192 223

Tl
224 255

The fields in bit positions 0-127 of the ASTE are
defined with respect to certain mechanisms and
instructions in ["ASN-Second-Table Entries” on|

[page 3-19 The fields in the ASTE are defined for
access-register translation for other than BRANCH
IN SUBSPACE GROUP in “Extended
[ASN-Second-Table Entries” on page 5-45| For
BRANCH IN SUBSPACE GROUP only, the fields
in the ASTE are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is avail-
able. When bit 0 is zero during access-register
translation of ALET 1 or an ALET other than 0 and
1 for BRANCH IN SUBSPACE GROUP, the trans-
lation proceeds. When the bit is one, an
ASTE-validity exception is recognized. The bit is
ignored during access-register translation of ALET
0. When the ASTE is designated by a
subspace-ASTE origin (SSASTEO) in a
dispatchable-unit control table, bit O is also used
as described in the definition of bits 160-191
(ASTESN).

Authority-Table Origin (ATO): Bits 1-29 are not
used by BRANCH IN SUBSPACE GROUP.

Base-Space Bit (B): Bit 31 specifies, when one,
that the address space associated with the ASTE
is the base space of a subspace group. When
BRANCH IN SUBSPACE GROUP uses an ALET
other than ALETs O and 1 to locate a destination
ASTE, it recognizes a special-operation exception
if the destination-ASTE origin does not equal the
base-ASTE origin in the dispatchable-unit control
table and bit 31 is one in the destination ASTE.

Authorization Index (AX): Bits 32-47 are not
used by BRANCH IN SUBSPACE GROUP.

Authority-Table Length (ATL): Bits 48-59 are
not used by BRANCH IN SUBSPACE GROUP.

Segment-Table Designation (STD): Bits 64-95
are obtained as the result of access-register trans-
lation done for BRANCH IN SUBSPACE GROUP.
When BRANCH IN SUBSPACE GROUP uses an
ALET other than ALETs 0 and 1 to locate a desti-
nation ASTE, it recognizes a special-operation
exception if the destination-ASTE origin does not
equal the base-ASTE origin in the dispatchable-
unit control table and the subspace-group-control
bit, bit 86 (G), in the destination ASTE is zero.
When BRANCH IN SUBSPACE GROUP transfers
control to the base space of a subspace group
associated with the current dispatchable unit, it
places bits 64-95 in control register 1; otherwise,

when BRANCH IN SUBSPACE GROUP transfers
control to a subspace of the subspace group, it
places bits 65-87 and 89-95 in the corresponding
bit positions of control register 1. Bits 64-95 are
used after ASN translation by PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS as described in
[FASN-Second-Table Entries” on page 3-19

Linkage-Table Designation (LTD): Bits 96-127
are not used by BRANCH IN SUBSPACE
GROUP.

Access-List Designation (ALD): When this

ASTE is designated by the primary-ASTE origin in
control register 5, bits 128-159 are the primary-
space access-list designation (PSALD). During
access-register translation when the primary-list
bit, bit 7, in the ALET being translated is one, the
PSALD is the effective access-list designation.
The PSALD is a format-O ALD or a format-1 ALD,
depending on the model.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control
revocation of the accessing capability represented
by access-list entries that designate the ASTE.
During access-register translation, bits 160-191
are compared against the ASTESN in the access-
list entry, and inequality causes an
ASTE-sequence exception to be recognized.

When the ASTE is designated by a
subspace-ASTE origin (SSASTEO) in a
dispatchable-unit control table, bits 160-191 are
also used to control revocation of the linkage
capability represented by that SSASTEO. When
BRANCH IN SUBSPACE GROUP uses ALET 1 to
transfer control to the subspace specified by the
SSASTEO, or when PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, or LOAD ADDRESS
SPACE PARAMETERS uses the SSASTEO to set
bits 1-23 and 25-31 of the primary STD in control
register 1 or the secondary STD in control register
7 from the same bits of the STD in the subspace
ASTE, those instructions first test bit O of the sub-
space ASTE for being zero and recognize an
ASTE-validity exception if it is not, and they then
compare bits 160-191 to the subspace-ASTE
sequence number (SSASTESN) in the
dispatchable-unit control table and recognize an
ASTE-sequence exception if there is an inequality.

Chapter 5. Program Execution 5-55

However, when either of the two named exception
conditions exists for LOAD ADDRESS SPACE
PARAMETERS, the instruction sets condition code
1 or 2 instead of recognizing the exception.

Bits 84-85, 128, and 192-223 are reserved for
possible future extensions and should be zeros.
Bits 224-255 are available for use by program-
ming. The second 32 bytes of the 64-byte ASTE
also are reserved for possible future extensions
and should contain all zeros.

Subspace-Replacement
Operations

The subspace-group facility includes new opera-
tions, called subspace-replacement operations, of
PROGRAM CALL, PROGRAM TRANSFER,
PROGRAM RETURN, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS.
(PROGRAM CALL FAST does not have
subspace-replacement operations.) The new
operations apply when the dispatchable unit for
which any of the five named instructions is exe-
cuted is in a state called subspace active. A
dispatchable unit is subspace active if it has used
BRANCH IN SUBSPACE GROUP to transfer
control to a subspace of its subspace group and
has not subsequently used BRANCH IN SUB-
SPACE GROUP to return control to the base
space of the group.

The definitions of the subspace-replacement oper-
ations are included in the definitions of the five
named instructions in Chapter 10, “Control
Instructions.” The operations are described in a
general way as follows. Whenever an address
space is established as the primary or secondary
address space as a result of ASN translation,
then, if that address space is in a subspace group,
as indicated by the subspace-group-control bit, bit
22 (G), being one in the segment-table desig-
nation (STD) for the address space (the new
PSTD in control register 1 or SSTD in control reg-
ister 7), and if the dispatchable unit is subspace-
active, as indicated by the subspace-active bit, bit
0 (SA) of word 1, in the dispatchable-unit control
table (DUCT) being one, the
ASN-second-table-entry (ASTE) origin (ASTEO)
for the address space, which was obtained by
ASN translation, is compared to the base-ASTE
origin (BASTEO), bits 1-25 of word 0, in the
DUCT. If that ASTEO and the BASTEO are

5-56 ESA/390 Principles of Operation

equal, the following occurs. An ASTE-validity
exception is recognized if bit 0 in the ASTE for the
last subspace entered by the dispatchable unit,
which ASTE is designated by the subspace-ASTE
origin (SSASTEO) in the DUCT, is one. An
ASTE-sequence exception is recognized if the
ASTE-sequence number (ASTESN) in word 5 of
the subspace ASTE does not equal the subspace
ASTESN (SSASTESN) in word 3 of the DUCT.
However, LOAD ADDRESS SPACE PARAME-
TERS sets a nonzero condition code instead of
recognizing the ASTE-validity or ASTE-sequence
exception. If no exception exists, bits 1-23 and
25-31 of the STD for the address space (the
PSTD in control register 1 or SSTD in control reg-
ister 7) are replaced by the same bits of the STD
in word 2 of the subspace ASTE.

Whenever the address-space-function control, bit
15 of control register 0, is zero, the above addi-
tional general definition does not apply, and the
definitions of the five instructions are the same as
when the subspace-group facility is not installed.

If an addressing exception is recognized when
attempting to access the DUCT or subspace
ASTE, the instruction execution is suppressed. If
an ASTE-validity or ASTE-sequence exception is
recognized, the instruction execution is nullified.
Such nullification or suppression causes all control
register contents to remain unchanged from what
they were at the beginning of the instruction exe-
cution.

Key-controlled protection does not apply to any
accesses to the DUCT or subspace ASTE.

For comparing the ASTEO obtained by ASN trans-
lation to the BASTEO, either the ASTEO may be
compared to the BASTEO or the ASTEO, with one
leftmost and six rightmost zeros appended, may
be compared to the entire contents of word 0 of
the DUCT.

When the SSASTEO in the DUCT is used to
access the subspace ASTE, no check is made for
whether the SSASTEO is all zeros.

The references to the DUCT and subspace ASTE
are word-concurrent single-access references.
The words of the DUCT are accessed in no partic-
ular order. The words of the subspace ASTE are
accessed in no particular order except that word 0
is accessed first.

The exceptions that can be recognized during a
subspace-replacement operation are referred to
collectively as the subspace-replacement
exceptions and are listed in priority order in
“Subspace-Replacement Exceptions” on|

page 6-44_1|.

Linkage-Stack Introduction

Many of the functions related to the linkage stack
are described in this section and in|‘Linkage-Stac

[Operations” on page 5-63| Additionally, tracing of
the stacking PROGRAM CALL instruction and of

the PROGRAM RETURN instruction is described

in[Chapter 5, “Program Execution’} interruptions in

Chaﬁter 6, “InterruEtions’]; and the instructions in
Chapter 10, “Control Instructions.]

Summary
These major functions are provided:

1. A table-based subroutine-linkage mechanism
that provides increased (compared to 370-XA)
PSW and control-register status changing and
which saves and restores this status and the
contents of general registers and access reg-
isters through the use of an entry in a linkage
stack.

2. A new branch-type linkage mechanism that
uses the linkage stack.

3. Instructions for placing an additional two
words of status in the current linkage-stack
entry and for retrieving all of the status and
the general-register and access-register con-
tents that are in the entry.

4. An instruction for determining whether a
program is authorized to use a particular
access-list-entry token.

5. Aids for program-problem analysis.

In addition, control and authority mechanisms are
incorporated to control these functions.

It is intended that a separate linkage stack be
associated with and used by each dispatchable
unit. The linkage stack for a dispatchable unit
resides in the home address space of the
dispatchable unit.

It is intended that a dispatchable unit's linkage
stack be protected from the dispatchable unit by

means of key-controlled protection. Key-controlled
protection does not apply to the linkage-stack
instructions that place information in or retrieve
information from the linkage stack.

The linkage-stack functions are for use by pro-
grams considered to be semiprivileged, that is,
programs which are executed in the problem state
but which are authorized to use additional func-
tions. With these authorization controls, a nonhi-
erarchical organization of programs may be
established, with each program in a sequence of
calling and called programs having a degree of
authority that is arbitrarily different from those of
programs before or after it in the sequence. The
range of functions available to each program, and
the ability to transfer control from one program to
another, are prescribed in tables that are
managed by the control program.

The linkage-stack instructions, which are semipriv-
ileged, are described in Chapter 10, “Control
Instructions.” They are:

¢ BRANCH AND STACK

e EXTRACT STACKED REGISTERS
e EXTRACT STACKED STATE

e MODIFY STACKED STATE

¢ PROGRAM RETURN

e TEST ACCESS

In addition, the PROGRAM CALL instruction is
changed (relative to 370-XA) to optionally form an
entry in the linkage stack. A PROGRAM CALL
instruction that operates on the linkage stack is
called stacking PROGRAM CALL. Recognition of
PROGRAM CALL as stacking PROGRAM CALL is
under the control of a bit in a 32-byte entry-table
entry. The entry-table entry is extended in length
from 16 bytes to 32 bytes when the address-
space-function (ASF) control, bit 15 of control reg-
ister 0, is one.

The PROGRAM CALL FAST instruction is avail-
able when the program-call-fast facility is installed.
PROGRAM CALL FAST has the same operation
code as PROGRAM CALL and is a variation of
stacking PROGRAM CALL. PROGRAM CALL
FAST is not further described in this section. It is
described in Chapter 10, “Control Instructions.”

Linkage-Stack Functions

Chapter 5. Program Execution 5-57

Transferring Program Control

The use of the linkage stack permits programs
operating at arbitrarily different levels of authority
to be linked directly without the intervention of the
control program. The degree of authority of each
program in a sequence of calling and called pro-
grams may be arbitrarily different, thus allowing a
nonhierarchical organization of programs to be
established. Modular authorization control can be
obtained principally by associating an extended
authorization index with each program module.
This allows program modules with different author-
ities to coexist in the same address space. On
the other hand, the extended authorization index
in effect during the execution of a called program
module can be the one that is associated with the
calling program module, thus allowing the called
module to be executed with different authorities on
behalf of different dispatchable units. Options
concerning the PSW-key mask and the secondary
ASN are other means of associating different
authorities with different programs or with the
same called program. The authority of each
program is prescribed in tables that are managed
by the control program. By setting up the tables
so that the same program can be called by means
of different PC numbers, the program can be
assigned different authorities depending on which
PC number is used to call it. The tables also
allow control over which PC numbers can be used
by a program to call other programs.

The stacking PROGRAM CALL and PROGRAM
RETURN linkage operations can link programs
residing in different address spaces and having
different levels of authority. The execution state
and the contents of the general registers and
access registers are saved during the execution of
stacking PROGRAM CALL and are partially
restored during the execution of PROGRAM
RETURN. A linkage stack provides an efficient
means of saving and restoring both the execution
state and the contents of registers during linkage
operations. The availability of the linkage stack is
controlled by the ASF control in control register 0.
When the linkage stack is not available, these two
linkage operations cannot be performed.

During the execution of a PROGRAM CALL
instruction, the PC-number-translation process is
performed to locate a 16-byte or 32-byte entry-
table entry, as determined by the ASF control.
When a 32-byte entry-table entry is located and a
bit, named the PC-type bit, in the entry-table entry

5-58 ESA/390 Principles of Operation

is one, the stacking PROGRAM CALL operation is
specified; otherwise, the basic PROGRAM CALL
operation (the 370-XA operation) is specified.

In addition to the entry information specified in the
16-byte entry-table entry, the 32-byte entry-table
entry further contains information that specifies
options concerning the address-space control and
PSW key in the PSW, and the PSW-key mask,
extended authorization index, and secondary ASN
in the control registers.

During the stacking PROGRAM CALL operation
and by means of the additional information in the
entry-table entry, the address-space control in the
PSW can be set to specify either the primary-
space mode or the access-register mode. The
PSW key can be either left unchanged or replaced
from the entry-table entry. The PSW-key mask in
control register 3 can be either ORed to or
replaced from the entry-table entry. The extended
authorization index in control register 8 can be
either left unchanged or replaced from the entry-
table entry. The secondary ASN in control reg-
ister 3 can be set equal to the primary ASN of
either the calling program or the called program;
thus, the ability of the called program to have
access to the primary address space of the calling
program can be controlled.

The stacking PROGRAM CALL operation always
forms an entry, called a state entry, in the linkage
stack to save the execution state and the contents
of general registers 0-15 and access registers
0-15. The saved execution state includes the PC
number used, a called-space identification, the
updated PSW before any changes are made due
to the entry-table entry, and the extended authori-
zation index, PSW-key mask, primary ASN, and
secondary ASN existing before the operation.
However, the value of the PER mask in the saved
updated PSW is unpredictable. The linkage-stack
state entry also contains an entry-type code that
identifies the entry as one that was formed by
PROGRAM CALL.

A space-switching operation occurs when the
address-space number (ASN) specified in the
entry-table entry is nonzero. When space
switching occurs, the operation is called
PROGRAM CALL with space switching (PC-ss).
When no space switching occurs, the operation is
called PROGRAM CALL to current primary
(PC-cp).

PROGRAM CALL with space switching performs
ASN translation of the new primary ASN to obtain
a new primary-ASTE origin and a new primary
segment-table designation, which it places in
control registers 5 and 1, respectively. It sets the
secondary segment-table designation in control
register 7 equal to either the old primary segment-
table designation or the new one, depending on
whether it set the secondary ASN equal to the old
primary ASN or the new one, respectively.
PROGRAM CALL to current primary sets the sec-
ondary ASN equal to the primary ASN and the
secondary segment-table designation equal to the
primary segment-table designation.

The instruction PROGRAM RETURN restores
most of the information saved in the linkage stack
by the stacking PROGRAM CALL operation. It
restores the PSW, extended authorization index,
PSW-key mask, primary ASN, secondary ASN,
and the contents of general registers 2-14 and
access-registers 2-14. However, the PER mask in
the current PSW remains unchanged, and the
resulting condition code is unpredictable. The
operation of PROGRAM RETURN is referred to by
saying that PROGRAM RETURN unstacks a state
entry.

For PROGRAM RETURN, a space-switching oper-
ation occurs when the restored primary ASN is not
equal to the primary ASN existing before the oper-
ation. When space switching occurs, the opera-
tion is called PROGRAM RETURN with space
switching (PR-ss). When no space switching
occurs, the operation is called PROGRAM
RETURN to current primary (PR-cp).

PROGRAM RETURN with space switching per-
forms ASN translation of the restored primary ASN
to obtain a new primary-ASTE origin and a new
primary segment-table designation, which it places
in control registers 5 and 1, respectively. For
PROGRAM RETURN with space switching or to
current primary, (1) if the restored secondary ASN
is the same as the restored primary ASN, the sec-
ondary segment-table designation in control reg-
ister 7 is set equal to the new primary
segment-table designation in control register 1, or
(2) if the the restored secondary ASN is not the
same as the restored primary ASN, ASN trans-
lation and ASN authorization of the restored sec-
ondary ASN are performed to obtain a new
secondary segment-table designation, which is
placed in control register 7.

The stacking PROGRAM CALL operation and the
PROGRAM RETURN operation each can be per-
formed successfully only in the primary-space
mode or access-register mode. An exception is
recognized when the CPU is in the real mode,
secondary-space mode, or home-space mode.

A bit, named the unstack-suppression bit, can be
set to one in a linkage-stack state entry to cause
an exception if an attempt is made by PROGRAM
RETURN to unstack the entry. When the bit is
one, the entry still can be operated on by the
instructions that add information to or retrieve
information from the entry. The unstack-
suppression bit is intended to allow the control
program to gain control when an attempt is made
to unstack a state entry in which the bit is one.

Branching Using the Linkage Stack

The execution state and the contents of the
general registers and access registers can also be
saved in the linkage stack by means of the
instruction BRANCH AND STACK. BRANCH
AND STACK uses a branch address as do the
other branching instructions, instead of using a PC
number. BRANCH AND STACK, along with
PROGRAM RETURN, can link programs residing
in the same address space and having the same
level of authority; that is, BRANCH AND STACK
does not change the execution state except for
the instruction address.

BRANCH AND STACK forms a linkage-stack state
entry that is almost the same as one formed by
PROGRAM CALL. When it is necessary to distin-
guish between these two types of state entry, an
entry formed by PROGRAM CALL is called a
program-call state entry, and one formed by
BRANCH AND STACK is called a branch state
entry. A branch state entry differs from a
program-call state entry in two ways: (1) it con-
tains a different entry-type code, which identifies it
as a branch state entry, and (2) it contains the
new value of bits 32-63 of the current PSW, the
addressing mode and the branch address, instead
of a called-space identification and a PC number.
The new value of PSW bits 32-63 is in addition to
the complete PSW that is saved in the state entry.

For BRANCH AND STACK, the addressing mode
and instruction address that are part of the com-
plete PSW saved in the state entry can be the
current addressing mode and the updated instruc-

Chapter 5. Program Execution 5-59

tion address (the address of the next sequential
instruction), or they can be specified in a register.
This register can be one that had link information
placed in it by a BRANCH AND LINK (BALR only),
BRANCH AND SAVE, BRANCH AND SAVE AND
SET MODE, or BRANCH AND SET MODE
instruction. Thus, BRANCH AND STACK can be
used either in a calling program or at (or near) the
entry point of a called program, and, in either
case, a PROGRAM RETURN instruction located
at the end of the called program will return cor-
rectly to the calling program. The ability to use
BRANCH AND STACK at an entry point allows
the linkage stack to be used without changing old
calling programs.

When the Rz field of BRANCH AND STACK is
zero, the instruction is executed without causing
branching.

When PROGRAM RETURN unstacks a branch
state entry, it ignores the extended authorization
index, PSW-key mask, primary ASN, and sec-
ondary ASN in the entry. The PROGRAM
RETURN instruction restores the PSW and the
contents of general registers 2-14 and access reg-
isters 2-14 that were saved in the entry. However,
the PER mask in the current PSW remains
unchanged, and the resulting condition code is
unpredictable.

BRANCH AND STACK can be executed success-
fully only in the primary-space mode or access-
register mode. An exception is recognized when
the CPU is in the real mode, secondary-space
mode, or home-space mode.

The unstack-suppression bit has the same effect
in a branch state entry as it does in a program-call
state entry.

Adding and Retrieving Information

The instruction MODIFY STACKED STATE can
be used by a program to place two words of infor-
mation, contained in a designated general-register
pair, in an area, called the modifiable area, of the
current linkage-stack state entry (a branch state
entry or a program-call state entry). This is
intended to allow a called program to establish a
recovery routine that will be given control by the
control program, if necessary.

The instructions EXTRACT STACKED REGIS-
TERS and EXTRACT STACKED STATE can be

5-60 ESA/390 Principles of Operation

used by a program to obtain any of the informa-
tion saved in the current state entry by BRANCH
AND STACK or PROGRAM CALL or placed there
by MODIFY STACKED STATE. EXTRACT
STACKED REGISTERS places the contents of a
specified range of general registers and access
registers back in the registers from which the con-
tents were saved. EXTRACT STACKED STATE
obtains any pair of words of the nonregister infor-
mation saved or placed in a state entry and places
them in a designated general-register pair.
EXTRACT STACKED STATE sets the condition
code to indicate whether the current state entry is
a branch state entry or a program-call state entry.

Testing Authorization

The instruction TEST ACCESS has as operands
an access-list-entry token (ALET) in a designated
access register and an extended authorization
index (EAX) in a designated general register.
TEST ACCESS applies the access-register-
translation process, which uses the specified EAX
instead of the current EAX in control register 8, to
the ALET, and it sets the condition code to indi-
cate the result. The condition code may indicate:
(1) the ALET is 00000000 hex, (2) the ALET des-
ignates an entry in the dispatchable-unit access
list and can be translated without exceptions in
access-register translation, (3) the ALET desig-
nates an entry in the primary-space access list
and can be translated without exceptions in
access-register translation, or (4) the ALET is
00000001 hex or causes exceptions in access-
register translation.

The principal purpose of TEST ACCESS is to
allow a called program to determine whether an
ALET passed to it by the calling program is
authorized for use by the calling program by
means of the calling program's EAX. This is in
support of a possible programming convention in
which a called program will not operate on an
AR-specified address space by means of its own
EAX unless the calling program is authorized to
operate on that space by means of the calling pro-
gram's EAX. The called program can obtain the
calling program's EAX, for use by TEST ACCESS,
from the current linkage-stack state entry by
means of the EXTRACT STACKED STATE
instruction.

Another purpose of TEST ACCESS is to indicate
the special cases in which the ALET is 00000000
hex, designating the primary address space, or

00000001 hex, designating the secondary address
space. Because PROGRAM CALL may change
the primary and secondary address spaces,
ALETs 00000000 hex and 00000001 hex may
designate different address spaces when used by
the called program than when used by the calling
program.

Still another purpose of TEST ACCESS is to indi-
cate whether the ALET designates an entry in the
primary-space access list since such a designation
after the primary address space was changed by
a space-switching program-linkage operation may
be an error.

Program-Problem Analysis

To aid program-problem analysis, the option is
provided of having a trace entry made implicitly for
three additional linkage operations when the
linkage stack is used. When branch tracing is on,
a trace entry is made each time a BRANCH AND
STACK instruction is executed and causes
branching. When ASN tracing is on, a trace entry
is made each time the stacking PROGRAM CALL
operation is performed and each time PROGRAM
RETURN unstacks a linkage-stack state entry
formed by PROGRAM CALL or PROGRAM CALL
FAST. A detailed definition of tracing is contained
in[[Tracing” on page 4-10

As a further analysis aid, BRANCH AND STACK
when it causes branching, stackihng PROGRAM
CALL, and PROGRAM RETURN are also recog-
nized as PER successful-branching events. For
PROGRAM RETURN, the unstacked state entry
may have been formed by BRANCH AND STACK
or PROGRAM CALL.

The execution of a space-switching stacking
PROGRAM CALL or PROGRAM RETURN
instruction causes a space-switch event if the
primary space-switch-event control is one before
or after the operation or if a PER event is to be
indicated.

Extended Entry-Table Entries

When the address-space-function (ASF) control,
bit 15 of control register 0, is one, the entry-table
entry is extended in length from 16 bytes to 32
bytes. Bit 128 of the 32-byte entry-table entry
specifies whether the basic or the stacking
PROGRAM CALL operation is to be performed,

and bit positions 131-139 and 144-159 contain
information that is used only if stacking is speci-
fied.

This section describes the use of the 32-byte
entry-table entry in both the basic and the stacking
PROGRAM CALL operations. The description
here of the use in the basic PROGRAM CALL
operation is the same as the description in
[Table Entries” on page 5-26|

The PROGRAM CALL FAST instruction does not
use an entry-table entry; it uses a PCF-entry-table
entry. The PCF-entry-table entry is described in
the definition of PROGRAM CALL FAST in
Chapter 10, “Control Instructions.”

The 32-byte entry-table entry has the following
format:

Authorization Key Mask ASN
0 16 31
A Entry Instruction Address P
32 63

Entry Parameter

64 95

Entry Key Mask

96 112 127

T KIM[E[C|S| EK Entry Ext. Auth. Index

128 131 136 140 144 159
ASTE Address

160 186 191

192 223

224 255

Chapter 5. Program Execution 5-61

The fields in the 32-byte entry-table entry are allo-
cated as follows:

Authorization Key Mask: Bits 0-15 are used to
verify whether the program issuing the PROGRAM
CALL instruction, when in the problem state, is
authorized to call this entry point. The authori-
zation key mask and the current PSW-key mask in
control register 3 are ANDed, and the result is
checked for all zeros. If the result is all zeros, a
privileged-operation exception is recognized. The
test is not performed in the supervisor state.

ASN: Bits 16-31 specify whether a PC-ss or
PC-cp operation is to occur. When bits 16-31 are
all zeros, a PC-cp operation is specified. When
bits 16-31 are not all zeros, a PC-ss operation is
specified, and the bits are the ASN that replaces
the primary ASN.

Entry Addressing Mode (A): Bit 32 replaces the
addressing-mode bit, bit 32 of the current PSW,
as part of the PROGRAM CALL operation. When
bit 32 is zero, bits 33-39 must also be zeros; oth-
erwise, a PC-translation-specification exception is
recognized.

Entry Instruction Address: Bits 33-62, with a
zero appended on the right, form the instruction
address that replaces the instruction address in
the PSW as part of the PROGRAM CALL opera-
tion.

Entry Problem State (P): Bit 63 replaces the
problem-state bit, bit 15 of the current PSW, as
part of the PROGRAM CALL operation.

Entry Parameter: Bits 64-95 are placed in
general register 4 as part of the PROGRAM CALL
operation.

Entry Key Mask: Bits 96-111 are ORed into the
PSW-key mask in control register 3 when bit 132,
the PSW-key-mask control, is zero, or replace the
PSW-key mask in control register 3 when bit 132
is one, as part of the stackihng PROGRAM CALL
operation. Bits 96-111 are ORed into the
PSW-key mask as part of the basic PROGRAM
CALL operation.

PC-Type Bit (T): Bit 128, when one, specifies

that the PROGRAM CALL instruction is to perform
the stacking PROGRAM CALL operation. When

5-62 ESA/390 Principles of Operation

this bit is zero, PROGRAM CALL performs the
basic PROGRAM CALL operation.

PSW-Key Control (K): Bit 131, when one, speci-
fies that bits 136-139 are to replace the PSW key
in the PSW as part of the stacking PROGRAM
CALL operation. When this bit is zero, the PSW
key remains unchanged. Bit 131 is ignored during
the basic PROGRAM CALL operation.

PSW-Key-Mask Control (M): Bit 132, when one,
specifies that bits 96-111 are to replace the
PSW-key mask in control register 3 as part of the
stacking PROGRAM CALL operation. When this
bit is zero, bits 96-111 are ORed into the
PSW-key mask in control register 3 as part of the
stacking PROGRAM CALL operation. Bit 132 is
ignored during the basic PROGRAM CALL opera-
tion.

Extended-Authorization-Index Control (E): Bit
133, when one, specifies that bits 144-159 are to
replace the current extended authorization index in
control register 8 as part of the stacking
PROGRAM CALL operation. When this bit is
zero, the current extended authorization index
remains unchanged. Bit 133 is ignored during the
basic PROGRAM CALL operation.

Address-Space-Control Control (C): Bit 134,
when one, specifies that bit 17 of the current PSW
is to be set to one as part of the stacking
PROGRAM CALL operation. When this bit is
zero, bit 17 is set to zero. Because the CPU must
be in either the primary-space mode or the
access-register mode when a stacking PROGRAM
CALL instruction is issued, the result is that the
CPU is placed in the access-register mode if bit
134 is one or the primary-space mode if bit 134 is
zero. Bit 134 is ignored during the basic
PROGRAM CALL operation.

Secondary-ASN Control (S): Bit 135, when one,
specifies that bits 16-31 are to become the new
secondary ASN, and the new SSTD is to be set
equal to the new PSTD, as part of the stacking
PROGRAM CALL with-space-switching (PC-ss)
operation. When this bit is zero, the new SASN
and SSTD are set equal to the PASN and PSTD,
respectively, of the calling program. Bit 135 is
ignored during the basic PROGRAM CALL opera-
tion and the stacking PROGRAM CALL to-current-
primary (PC-cp) operation.

Entry Key (EK): Bits 136-139 replace the PSW
key in the PSW as part of the stacking
PROGRAM CALL operation if the PSW-key
control, bit 131, is one. Bits 136-139 are ignored,
and the current PSW key remains unchanged, if
bit 131 is zero. Bits 136-139 are ignored during
the basic PROGRAM CALL operation.

Entry Extended Authorization Index: Bits
144-159 replace the current extended authori-
zation index, bits 0-15 of control register 8, as part
of the stacking PROGRAM CALL operation if the
extended-authorization-index control, bit 133, is
one. Bits 144-159 are ignored, and the current
extended authorization index remains unchanged,
if bit 133 is zero. Bits 144-159 are ignored during
the basic PROGRAM CALL operation.

ASTE Address: When bits 16-31 are not all
zeros, bits 161-185, with six zeros appended on
the right, form the real ASN-second-table-entry
(ASTE) address that should result from applying
the ASN-translation process to bits 16-31. It is
unpredictable whether PC-ss uses bits 161-185 or
uses ASN translation to obtain the ASTE address.

Bits 33-39 must be zeros when bit 32 is zero; oth-
erwise, a PC-translation-specification exception is
recognized.

Bits 112-127, 129, 130, 140-143, 160, and
186-255 are reserved for possible future exten-
sions and should be zeros.

Linkage-Stack Operations

A linkage stack may be formed by the control
program for each dispatchable unit. The linkage
stack is used to save the execution state and the
contents of the general registers and access regis-
ters during the BRANCH AND STACK, stacking
PROGRAM CALL, and PROGRAM CALL FAST
operations. The linkage stack is also used to
restore a portion of the execution state and
general-register and access-register contents
during the PROGRAM RETURN operation.

PROGRAM CALL FAST is a variation of stacking
PROGRAM CALL and is further referred to in this
section only when there is a distinction between it
and stacking PROGRAM CALL.

A linkage stack resides in virtual storage. The
linkage stack for a dispatchable unit is in the

home address space for that dispatchable unit.
The home address space is designated by the
home segment-table designation in control register
13.

The linkage stack is intended to be protected from
problem-state programs so that these programs
cannot examine or modify the information saved in
the linkage stack, except by means of the
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE instructions. This protection can be
obtained by means of key-controlled protection.

A linkage stack may consist of a number of
linkage-stack sections chained together. A
linkage-stack section is variable in length. The
maximum length of each linkage-stack section is
65,560 bytes.

There are three types of entry in the linkage stack:
header entry, trailer entry, and state entry. A
header entry and a trailer entry are at the begin-
ning and end, respectively, of a linkage-stack
section, and they are used to chain linkage-stack
sections together. Header entries and trailer
entries are formed by the control program. A
state entry is used to contain the execution state
and register contents that are saved during the
BRANCH AND STACK or stacking PROGRAM
CALL operation, and it is formed during the opera-
tion. A state entry is further distinguished as
being a branch state entry if it was formed by
BRANCH AND STACK or as being a program-call
state entry if it was formed by PROGRAM CALL.

The actions of forming a state entry and saving
information in it during the BRANCH AND STACK
and stacking PROGRAM CALL operations are
called the stacking process. The actions of
restoring information from a state entry and log-
ically deleting the entry during the PROGRAM
RETURN operation are called the unstacking
process. The part of the unstacking process that
locates a state entry is also performed during the
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE operations.

Each type of linkage-stack entry has a length that
is a multiple of eight bytes. A header entry and
trailer entry each has a length of 16 bytes. A
state entry has a length of 168 bytes.

Chapter 5. Program Execution 5-63

Each of the header entry, trailer entry, and state
entry has a common eight-byte area at its end,
called the entry descriptor. The linkage-stack-
entry address in control register 15 designates the
leftmost byte of the entry descriptor of the last
linkage-stack entry, other than the trailer entry, in
a linkage-stack section. This entry is called the
current linkage-stack entry, and the section is
called the current linkage-stack section.

Each entry descriptor in a linkage-stack section,
except the one in the trailer entry of the section,
includes a field that specifies the amount of space
existing between the end of the entry descriptor
and the beginning of the trailer entry. This field is
named the remaining-free-space field. The
remaining-free-space field in a trailer entry is
unused.

When a new state entry is to be formed in the
linkage stack during the stacking process, the new
entry is placed immediately after the entry
descriptor of the current linkage-stack entry, pro-
vided that there is enough remaining free space in
the current linkage-stack section to contain the
new entry. If there is not enough remaining free
space in the current section, and if the trailer entry
in the current section indicates that another
section follows the current section, the new entry
is placed immediately after the entry descriptor of
the header entry of that following section, provided
that there is enough remaining free space in that
section. If the trailer entry indicates that there is
not a following section, an exception is recog-
nized, and a program interruption occurs. It is
then the responsibility of the control program to
allocate another section, chain it to the current
section, and cause the BRANCH AND STACK or
stacking PROGRAM CALL instruction to be reexe-
cuted. If there is a following section but there is
not enough remaining free space in it, an excep-
tion is recognized.

If the remaining-free-space value that is used to
locate a trailer entry is not a multiple of 8, an
exception is recognized. The remaining-free-
space value in the header entry of a linkage-stack
section must be set to a multiple of 8 to ensure
that the remaining-free-space value that may be
used to locate the trailer entry of the section will
be a multiple of 8.

When the stacking process is successful in
forming a new state entry, it updates the linkage-

5-64 ESA/390 Principles of Operation

stack-entry address in control register 15 so that
the address designates the leftmost byte of the
entry descriptor of the new entry, which thus
becomes the new current linkage-stack entry.

When, during the unstacking process in
PROGRAM RETURN, the current linkage-stack
entry is a state entry, the process operates on that
entry and then updates the linkage-stack-entry
address so that it designates the entry descriptor
of the preceding entry in the same linkage-stack
section. The preceding entry thus becomes the
current entry. The new current entry may be
another state entry, or it may be a header entry.

The header entry of a linkage-stack section indi-
cates whether there is a preceding section. If
there is a preceding section, the header entry con-
tains the address of the last linkage-stack entry,
other than the trailer entry, in the preceding
section. That last entry should be a state entry
(not another header entry), unless there is an
error in the linkage stack.

If the unstacking process is performed when the
current linkage-stack entry is a header entry, and
if the header entry indicates that a preceding
linkage-stack section exists, the unstacking
process proceeds by treating the entry designated
in the preceding section as if it were the current
entry, provided that this entry is a state entry. If
the header entry does not indicate a preceding
section, or if the entry designated in the preceding
section is not a state entry, an exception is recog-
nized.

When the unstacking process is performed in
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the process locates a state entry but does
not change the linkage-stack-entry address in
control register 15.

Each entry descriptor in a linkage-stack section
includes a field that specifies the length of the
next linkage-stack entry, other than the trailer
entry, in the section. When a state entry is
created during the stacking process, zeros are
placed in this field in the created entry, and the
length of the state entry is placed in this field in
the preceding entry. When a state entry is log-
ically deleted during the unstacking process in
PROGRAM RETURN, zeros are placed in this

field in the preceding entry. This field is named
the next-entry-size field.

When the stacking or unstacking process operates
on the linkage stack, key-controlled protection
does not apply, but low-address and page pro-
tection do apply.

Linkage-Stack-Operations Control

The use of the linkage stack is controlled by the
ASF control, bit 15 of control register 0, the home
segment-table designation in control register 13,
and the linkage-stack-entry address in control reg-
ister 15. The home segment-table designation is
described in [‘Dynamic Address Translation” on|
[page 3-26 The ASF control and linkage-stack-

entry address are described below.

Control Register 0

Bit 15 of control register O is the address-space-
function (ASF) control. When bit 15 is zero, the
entry-table entry is 16 bytes, and PROGRAM
CALL is necessarily basic PROGRAM CALL. Bit
15 also controls whether the linkage stack is avail-
able. The bit must be one for the following
instructions to be executed successfully:

¢ BRANCH AND STACK

e EXTRACT STACKED REGISTERS
e EXTRACT STACKED STATE

e MODIFY STACKED STATE

e PROGRAM CALL FAST

¢ PROGRAM RETURN

e TEST ACCESS

Otherwise, a special-operation exception is recog-
nized.

TEST ACCESS does not use the linkage stack.
For TEST ACCESS, the ASF control controls
whether the access-list-designation sources are
available.

A complete description of the effects of the ASF
control is in ['Address-Space-Function Control” on|

page 5-40,

Control Register 15

The location of the entry descriptor of the current
linkage-stack entry is specified in control register
15. The register has the following format:

Linkage-Stack-Entry Address

01 29 31

Linkage-Stack-Entry Address: Bits 1-28 of
control register 15, with three zeros appended on
the right, form the home virtual address of the
entry descriptor of the current linkage-stack entry
in the current linkage-stack section. Bits 1-28 are
changed during the stacking process in BRANCH
AND STACK and stacking PROGRAM CALL and
during the unstacking process in PROGRAM
RETURN. Bits 0 and 29-31 of control register 15
are set to zeros when bits 1-28 are changed.

Linkage Stack

The linkage stack consists of one or more linkage-
stack sections containing linkage-stack entries.
There are three principal types of linkage-stack
entry: header entry, trailer entry, and state entry.
A state entry is further distinguished as being
either a branch state entry or a program-call state
entry.

Each type of linkage-stack entry has an entry
descriptor at its end. The leftmost byte of the
entry descriptor of the current linkage-stack entry
in the current linkage-stack section is designated
by the linkage-stack-entry address in control reg-
ister 15.

The linkage stack resides in the home address
space, designated by the home segment-table
designation in control register 13. The linkage
stack is available only when the ASF control, bit
15 of control register 0, is one.

Entry Descriptors

An entry descriptor is at the end of each linkage-
stack entry. The entry descriptor is eight bytes in
length and has the following format:

U[ET| SI RFS NES

06 1 8 16 32 48 63

The fields in the entry descriptor are allocated as
follows:

Unstack-Suppression Bit (U): When bit O is one
in the entry descriptor of a header entry or state
entry encountered during the unstacking process
in PROGRAM RETURN, a stack-operation excep-
tion is recognized. Bit 0 is ignored in a trailer
entry and during the unstacking process in
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED

Chapter 5. Program Execution 5-65

STATE. The control program can temporarily set
bit 0 to one in the current linkage-stack entry (a
header entry or state entry) to prevent PROGRAM
RETURN from being executed successfully while
still allowing EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, and MODIFY
STACKED STATE to be executed successfully.
Bit 0 is set to zero in the entry descriptor of a
state entry when the entry is formed during the
stacking process.

Entry Type (ET): Bits 1-7 are a code that speci-
fies the type of the linkage-stack entry containing
the entry descriptor. The assigned codes are:

Code (in

Binary) Entry Type

0000001 Header entry

0000010 Trailer entry

0000100 Branch state entry
0000101 Program-call state entry

Codes 0000000, 0000011, and 0000110 through
0111111 binary are reserved for possible future
assignments. Codes 1000000 through 1111111
binary are available for use by programming.

Bits 1-7 are set to 0000100 or 0000101 binary in
the entry descriptor of a state entry when the entry
is formed during the stacking process.

A stack-type exception is recognized during the
unstacking process in EXTRACT STACKED REG-
ISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN if bits
1-7 in the current linkage-stack entry do not indi-
cate that the entry is a state entry or a header
entry; or, when the current entry is a header entry,
if bits 1-7 in the entry designated by the backward
stack-entry address in the header entry do not
indicate that the designated entry is a state entry.
However, a stack-specification exception is recog-
nized, instead of a stack-type exception, if both
the current entry and the designated entry are
header entries.

Section Identification (Sl): Bits 8-15 are an
identification, provided by the control program, of
the linkage-stack section containing the entry
descriptor. In the state entry formed by a stacking
process, the process sets bits 8-15 equal to the
contents of the section-identification field in the
preceding linkage-stack entry.

5-66 ESA/390 Principles of Operation

Remaining Free Space (RFS): Bits 16-31
specify the number of bytes between the end of
this entry descriptor and the beginning of the
trailer entry in the same linkage-stack section,
except that this field in a trailer entry has no
meaning. Thus, in the last state entry in a
section, or in the header entry if there is no state
entry, bits 16-31 specify the number of bytes avail-
able in the section for performance of the stacking
process. In the state entry formed by a stacking
process, the process sets bits 16-31 equal to the
contents of the remaining-free-space field in the
preceding linkage-stack entry minus the size, in
bytes, of the new entry. Bits 16-31 must be a
multiple of 8 (bits 29-31 must be zeros) in the
entry descriptor of the header entry in a linkage-
stack section; otherwise, a value that is not a mul-
tiple of 8 will be propagated to bits 16-31 in the
entry descriptor of each state entry in the section,
and a stack-specification exception will be recog-
nized if the stacking process attempts to locate
the trailer entry in the section in order to proceed
to the next section.

Next-Entry Size (NES): Bits 32-47 specify the
size in bytes of the next linkage-stack entry, other
than a trailer entry, in the same linkage-stack
section. This field in the current linkage-stack
entry contains all zeros. This field in a trailer entry
has no meaning. When the stacking process
forms a state entry, it places zeros in the next-
entry-size field of the new entry, and it places the
size of the new entry in the next-entry-size field of
the preceding entry. When the unstacking
process logically deletes a state entry, it places
zeros in the next-entry-size field of the preceding
entry, which entry becomes the current entry.

Bits 48-63 are set to zeros in a state entry when
the entry is formed during the stacking process.
In a header entry, trailer entry, or state entry, bits
48-63 are reserved for possible future extensions
and should always be zeros.

Programming Note: No entry-type code will be
assigned in which the leftmost bit of the code is
one. The control program can temporarily set the
leftmost bit to one in the entry-type code of the
current linkage-stack entry (a header entry or a
state entry) to prevent the successful execution of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, MODIFY STACKED STATE,
or PROGRAM RETURN.

Header Entries

A header entry is at the beginning of each linkage-
stack section. The header entry is 16 bytes in
length and has the following format:

[11111111171771777|B| BSEA
0 32

61 63

Entry Descriptor

64 127

The fields in the first eight bytes of the header
entry are allocated as follows:

Backward Stack-Entry Validity Bit (B): Bit 32,
when one, specifies that the preceding linkage-
stack section is available and that the backward
stack-entry address, bits 33-60, is valid. Bit 32 is
set to one during the stacking process when the
process proceeds to this section from the pre-
ceding one because there is not enough space
available in the preceding section to perform the
process. During the unstacking process when this
header entry is the current linkage-stack entry, a
stack-empty exception is recognized if bit 32 is
zero.

Backward Stack-Entry Address (BSEA): When
bit 32 is one, bits 33-60, with three zeros
appended on the right, form the 31-bit home
virtual address of the entry descriptor of the last
linkage-stack entry, other than the trailer entry, in
the preceding linkage-stack section. However, if
the current linkage-stack entry is in the preceding
or an earlier linkage-stack section, bits 33-60 may
have no meaning because the entry they desig-
nate, and earlier entries, may have been logically
deleted. Bits 33-60 are set during the stacking
process when the process proceeds to this section
from the preceding one because there is not
enough space available in the preceding section
to perform the process. During the unstacking
process when this header entry is the current
linkage-stack entry and bit 32 is one, the entry
designated by bits 33-60 is treated as the current
entry.

Bits 61-63 are set to zeros when bits 32-60 are
set during the stacking process. Bits 0-31 are
available for use by programming. Bits 61-63 are
reserved for possible future extensions.

Trailer Entries

A trailer entry is at the end of each linkage-stack
section. The trailer entry begins immediately after
the area specified by the remaining-free-space
field in the entry descriptors of the header entry
and each state entry in the same linkage-stack
section. The trailer entry is 16 bytes in length and
has the following format:

[1111171717177777(F| FSHA
0 32

61 63

Entry Descriptor

64 127

The fields in the first eight bytes of the trailer entry
are allocated as follows:

Forward-Section Validity Bit (F): Bit 32, when
one, specifies that the next linkage-stack section
is available and that the forward-section-header
address, bits 33-60, is valid. During the stacking
process when there is not enough space available
in the current linkage-stack section to perform the
process, a stack-full exception is recognized if bit
32 in the trailer entry of the current section is zero.

Forward-Section-Header Address (FSHA):
When bit 32 is one, bits 33-60, with three zeros
appended on the right, form the 31-bit home
virtual address of the entry descriptor of the
header entry in the next linkage-stack section.
During the stacking process when there is not
enough space available in the current section to
perform the process and bit 32 is one, the header
entry designated by bits 33-60 becomes the
current linkage-stack entry.

Bits 0-31 are available for use by programming.
Bits 61-63 are reserved for possible future exten-
sions.

Programming Note: All of the fields in the trailer
entry are set only by the control program.

Chapter 5. Program Execution 5-67

State Entries

Zero, one, or more state entries may follow the
header entry in each linkage-stack section. A
state entry may be a branch state entry, formed
by a BRANCH AND STACK instruction, or a
program-call state entry, formed by a stacking
PROGRAM CALL instruction. The state entry is
168 bytes in length and has the following format:

Hex Dec
0 0
8 8 Contents of
/ General Registers / 64 Bytes
30 48 0-15
38 56
40 64
48 72 Contents of
/ Access Registers / 64 Bytes
70 112 0-15
78 120
80 128
88 136 Other Status 32 Bytes
90 144 Information
98 152
AO 160 | Entry Descriptor 8 Bytes

Bytes 0-63 of the state entry contain the contents
of general registers 0-15 in the ascending order of
the register numbers. Bytes 64-127 contain the
contents of access registers 0-15 in the ascending
order of the register numbers. The contents of
these fields are moved from the registers to the
state entry during the BRANCH AND STACK and
stacking PROGRAM CALL operations. The con-
tents of general registers 2-14 and access regis-
ters 2-14 are restored from the state entry to the
registers during the PROGRAM RETURN opera-
tion. The contents of a specified range of general
registers and access registers can be restored
from the state entry to the registers by EXTRACT
STACKED REGISTERS.

Bytes 128-159 of the state entry contain the other
status information that is placed in the entry by
BRANCH AND STACK, stacking PROGRAM
CALL, and MODIFY STACKED STATE. A portion
of this status information is restored to the PSW
and control registers by PROGRAM RETURN,
and all of the information can be examined by
means of EXTRACT STACKED STATE. Bytes
160-167 contain the entry descriptor. EXTRACT
STACKED STATE sets the condition code to indi-
cate whether the entry-type code in the entry

5-68 ESA/390 Principles of Operation

descriptor specifies a branch state entry or a
program-call state entry.

Bytes 128-159 of the state entry have the fol-
lowing detailed format:

PKM SASN EAX PASN

128 130 132 134 135

PSW

136 143

In a Branch State Entry

A(Branch Address

144 148 151

In a Program-Call State Entry

PC Number

Called-Space Id.

144 148 151

Modifiable Area

152 159

The fields in bytes 128-159 are allocated as
follows. In the following, “of the calling program”
means the value existing at the beginning of the
execution of the BRANCH AND STACK or
stacking PROGRAM CALL instruction that forms
the state entry.

PSW-Key Mask (PKM): Bytes 128-129 contain
the PSW-key mask, bits 0-15 of control register 3,
of the calling program. The PSW-key mask is
saved in the state entry by BRANCH AND STACK
or stacking PROGRAM CALL, and it is restored to
the control register by a PROGRAM RETURN
instruction that unstacks an entry formed by
stacking PROGRAM CALL.

Secondary ASN (SASN): Bytes 130-131 contain
the secondary ASN, bits 16-31 of control register
3, of the calling program. The SASN is saved in
the state entry by BRANCH AND STACK or
stacking PROGRAM CALL, and it is restored to
the control register by a PROGRAM RETURN

instruction that unstacks an entry formed by
stacking PROGRAM CALL.

Extended Authorization Index (EAX): Bytes
132-133 contain the extended authorization index,
bits 0-15 of control register 8, of the calling
program. The EAX is saved in the state entry by
BRANCH AND STACK or stacking PROGRAM
CALL, and it is restored to the control register by
a PROGRAM RETURN instruction that unstacks
an entry formed by stacking PROGRAM CALL.

Primary ASN (PASN): Bytes 134-135 contain
the primary ASN, bits 16-31 of control register 4,
of the calling program. The PASN is saved in the
state entry by BRANCH AND STACK or stacking
PROGRAM CALL, and it is restored to the control
register by a PROGRAM RETURN instruction that
unstacks an entry formed by stacking PROGRAM
CALL.

Program-Status Word (PSW): In a branch state
entry formed by a BRANCH AND STACK instruc-
tion in which the R: field is zero, and in a
program-call state entry, bytes 136-143 contain
the updated PSW of the calling program. Thus,
the addressing-mode bit in this PSW specifies the
addressing mode of the calling program, and the
instruction address designates the next sequential
instruction following the BRANCH AND STACK or
stacking PROGRAM CALL instruction that formed
the state entry, or following an EXECUTE instruc-
tion that had the BRANCH AND STACK or
stacking PROGRAM CALL instruction as its target
instruction. In a branch state entry formed by a
BRANCH AND STACK instruction in which the R1
field is nonzero, bytes 136-143 contain the PSW
of the calling program, except that the addressing-
mode bit and instruction address in bytes 140-143
are as specified by the contents of the general
register designated by the R: field. See the defi-
nition of BRANCH AND STACK in
[“Control Instructions’] for how the addressing-mode
bit and instruction address are specified. The
value of the PER mask in bytes 136-143 is always
unpredictable. The PSW is saved in the state
entry by BRANCH AND STACK or stacking
PROGRAM CALL and is restored as the current
PSW by PROGRAM RETURN, except that the
PER mask and the condition code, bits 1 and
18-19 of the PSW, are not restored. PROGRAM
RETURN does not change the PER mask in the

current PSW, and it sets the condition code to an
unpredictable value.

Addressing Mode (A): In a branch state entry,
bit position 0 of bytes 148-151 contains the
addressing-mode bit, bit 32 of the PSW, at the
end of the execution of the BRANCH AND STACK
instruction that formed the state entry. The
addressing-mode bit is saved in bit position 0 of
bytes 148-151 by BRANCH AND STACK.
BRANCH AND STACK does not change the
addressing-mode bit in the PSW.

Branch Address: In a branch state entry, bit
positions 1-31 of bytes 148-151 contain the
instruction address, bits 33-63 of the PSW, at the
end of the execution of the BRANCH AND STACK
instruction that formed the state entry. The
instruction address is saved in bit positions 1-31 of
bytes 148-151 by BRANCH AND STACK. When
the Rz field of BRANCH AND STACK is nonzero,
the instruction causes branching, and bits 1-31 of
bytes 148-151 are the branch address. When the
Rz field of BRANCH AND STACK is zero, the
instruction is executed without branching, and bits
1-31 of bytes 148-151 designate the next sequen-
tial instruction following the BRANCH AND STACK
instruction, or following an EXECUTE instruction
that had the BRANCH AND STACK instruction as
its target instruction.

Called-Space Identification: In a program-call
state entry when the called-space-identification
facility is installed, bytes 144-147 contain the
called-space identification (CSl). The CSI is
saved in the state entry by stacking PROGRAM
CALL. If the PROGRAM CALL operation was
space switching, bytes 0 and 1 of the CSI (bytes
144 and 145 of the state entry) contain the new
primary ASN that was placed in control register 4
by the PROGRAM CALL instruction, and bytes 2
and 3 of the CSI (bytes 146 and 147 of the state
entry) contain the rightmost two bytes of the ASTE
sequence number (ASTESN) in the new primary
ASTE whose address was placed in control reg-
ister 5 by the PROGRAM CALL instruction. If the
PROGRAM CALL operation was the to-current-
primary operation, or if the operation was
PROGRAM CALL FAST, the CSl is all zeros. In a
program-call state entry when the called-space-
identification facility is not installed, or in a branch
state entry, the contents of bytes 144-147 are
unpredictable.

Chapter 5. Program Execution 5-69

PC Number: In a program-call state entry, bit
positions 12-31 of bytes 148-151 contain the PC
number used by the stacking PROGRAM CALL
instruction that formed the entry. Stacking
PROGRAM CALL places the PC number in bit
positions 12-31 of bytes 148-151, and it places
zeros in bit positions 0-11.

Modifiable Area: Bytes 152-159 are the field
that is set by MODIFY STACKED STATE.
BRANCH AND STACK and stacking PROGRAM
CALL place all zeros in bytes 152-159.

The contents placed in bytes 144-147 by
BRANCH AND STACK and stacking PROGRAM
CALL are unpredictable. Bytes 144-147 are
reserved for possible future extensions.

Stacking Process

The stacking process is performed as part of a
BRANCH AND STACK or stacking PROGRAM
CALL (or PROGRAM CALL FAST) operation.
(PROGRAM CALL FAST is referred to only when
there is a distinction between it and stacking
PROGRAM CALL.) The process locates space
for a new linkage-stack state entry, forms the
entry, updates the next-entry-size field in the pre-
ceding entry, and updates the linkage-stack-entry
address in control register 15 so that the new
entry becomes the current linkage-stack entry.

For the stacking process to be performed suc-
cessfully, the address-space-function control, bit
15 of control register 0, must be one, DAT must
be on, and the CPU must be in the primary-space
mode or access-register mode; otherwise, a
special-operation exception is recognized, and the
operation is suppressed.

Except as just mentioned, the stacking process is
performed independent of the current addressing
mode and translation mode, as specified by bits
32, 16, and 17 of the current PSW. All addresses
used during the stacking process are always
31-bit home virtual addresses.

During the stacking process when any address is
formed through the addition or subtraction of a
value to or from another address, a carry out of,
or a borrow into, bit position 1 of the address, if
any, is ignored.

When the stacking process fetches or stores by
using an address that designates, after translation,

5-70 ESA/390 Principles of Operation

a location that is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed.

Key-controlled protection does not apply to the
accesses made during the stacking process, but
page protection and low-address protection do
apply. A protection exception causes the opera-
tion to be suppressed.

Locating Space for a New Entry

The linkage-stack-entry address in control register
15 is used to locate the current linkage-stack
entry. Bits 1-28 of control register 15, with three
zeros appended on the right, form the 31-bit home
virtual address of the leftmost byte of the entry
descriptor of the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 31-bit
home virtual address. This fetch is for the
purpose of obtaining the section-identification and
remaining-free-space fields in the word; the
unstack-suppression bit and entry-type field in the
word are not examined.

The 16-bit unsigned binary value in the remaining-
free-space field, bits 16-31 of the entry descriptor,
is compared against the size in bytes of the
linkage-stack entry to be formed. The size of a
state entry is 168 bytes. If the value in the field is
equal to or greater than the size of the entry to be
formed, processing continues as described in
[‘Forming the New Entry” on page 5-71} otherwise,
processing continues as described below.

When the remaining-free-space field in the current
linkage-stack entry indicates that there is not
enough space available in the current linkage-
stack section to form the new entry, the second
word of the trailer entry of the current section is
fetched. The address for fetching this word is
determined as follows: to the address formed
from the contents of control register 15, add 8 to
address the first byte after the entry descriptor of
the current entry, then add the contents of the
remaining-free-space field of the current entry to
address the first byte of the trailer entry, and then
add 4 to address the second word of the trailer
entry. The remaining-free-space value used in the
addition must be a multiple of 8; otherwise, a
stack-specification exception is recognized, and
the operation is nullified.

If the forward-section-validity bit, bit 32, of the
trailer entry is zero, a stack-full exception is recog-
nized, and the operation is nullified; otherwise, the
forward-section-header address in the trailer entry
is used to locate the header entry in the next
linkage-stack section. Bits 33-60 of the trailer
entry, with three zeros appended on the right,
form the 31-bit home virtual address of the left-
most byte of the entry descriptor of the header
entry in the next section.

The first word of the entry descriptor of the header
entry in the next linkage-stack section is fetched.
This fetch is for the purpose of obtaining the
section-identification and remaining-free-space
fields in the word; the unstack-suppression bit and
entry-type field in the word are not examined.

The value in the remaining-free-space field of the
header entry in the next linkage-stack section is
compared against the size in bytes of the entry to
be formed. If the value in the field is equal to or
greater than the size of the entry to be formed, the
following occurs:

¢ The linkage-stack-entry address, bits 1-28 of
control register 15, is placed, as the backward
stack-entry address, in bit positions 33-60 of
the header entry in the next linkage-stack
section, and zeros are placed in bit positions
61-63.

¢ The backward stack-entry validity bit, bit 32, in
the header entry in the next section is set to
one.

¢ Bits 1-28 of the 31-bit home virtual address of
the entry descriptor of the header entry in the
next section are placed in bit positions 1-28 of
control register 15, and zeros are placed in bit
positions 0 and 29-31 of control register 15.
Thus, the header entry in the next section
becomes the current linkage-stack entry, and
the next section becomes the current linkage-
stack section.

e Processing continues as described in

[‘Forming the New Entry.|

If the value in the remaining-free-space field of the
header entry in the next section (before the next
section becomes the current section) is less than
the size of the linkage-stack entry to be formed, a
stack-specification exception is recognized, and
the operation is nullified.

Forming the New Entry

When the remaining-free-space field in the current
linkage-stack entry indicates that there is enough
space available in the current linkage-stack
section to form the new entry, the new entry is
formed beginning immediately after the entry
descriptor of the current entry.

The new entry is a state entry. The contents of
general registers 0-15 are stored in bytes 0-63 of
the new entry, in the ascending order of the reg-
ister numbers. The contents of access registers
0-15 are stored in bytes 64-127 of the new entry,
in the ascending order of the register numbers.
The PSW-key mask, bits 0-15 of control register 3;
secondary ASN, bits 16-31 of control register 3;
extended authorization index, bits 0-15 of control
register 8; and primary ASN, bits 16-31 of control
register 4, are stored in bytes 128-129, 130-131,
132-133, and 134-135, respectively, of the new
entry. The current PSW, in which the instruction
address has been updated, is stored in bytes
136-143 of the new entry. However, the value of
the PER mask, bit 1 in the PSW stored, is unpre-
dictable. Also, if the instruction being executed is
a BRANCH AND STACK instruction in which the
R: field is nonzero, the addressing-mode bit and
instruction address stored in bytes 140-143 of the
new entry are as specified by the contents of the
general register designated by the R: field.

When the called-space-identification facility is
installed and the instruction is PROGRAM CALL
or PROGRAM CALL FAST, the called-space iden-
tification is stored in bytes 144-147 of the new
entry. When the instruction is performing the
space-switching PROGRAM CALL operation, the
called-space identification is the two-byte ASN,
bytes 2 and 3, in the entry-table entry used by the
instruction, followed by bytes 2 and 3 of the ASTE
sequence number, bytes 2 and 3 being bits
176-191, in the ASN-second-table entry specified
by the ASN. When the instruction is performing
the to-current-primary PROGRAM CALL operation
or the space-switching or to-current-primary
PROGRAM CALL FAST operation, the called-
space identification is all zeros.

When the instruction is BRANCH AND STACK,
the addressing-mode bit and instruction address,
PSW bits 32-63, existing at the end of the exe-
cution of the instruction are stored in bytes
148-151 of the new entry. When the instruction is
PROGRAM CALL, the 20-bit PC number used,

Chapter 5. Program Execution 5-71

with 12 zeros appended on the left, is stored in
bytes 148-151. Zeros are stored in bytes 152-159
of the new entry.

When the called-space-identification facility is not
installed or the instruction is BRANCH AND
STACK, the contents of bytes 144-147 of the new
entry are unpredictable.

Bytes 160-167 of the new entry are its entry
descriptor. The unstack-suppression bit, bit 0, of
this entry descriptor is set to zero. The code
0000100 binary is stored in the entry-type field,
bits 1-7, of this entry descriptor if the instruction
being executed is BRANCH AND STACK. The
code 0000101 binary is stored if the instruction is
PROGRAM CALL. The value in the section-
identification field of the current linkage-stack entry
is stored in the section-identification field, bits
8-15, of this entry descriptor. The value in the
remaining-free-space field of the current entry,
minus the size in bytes of the new entry, is stored
in the remaining-free-space field of this entry
descriptor. Zeros are stored in the next-entry-size
field, bits 32-47, and in bit positions 48-63 of this
entry descriptor.

The stores into the new entry appear to be word-
concurrent as observed by other CPUs. The
order in which the stores occur is unpredictable.

Updating the Current Entry

The size in bytes of the new linkage-stack entry is
stored in the next-entry-size field of the current
entry. The remainder of the current entry remains
unchanged.

The order of the stores into the current entry and
the new entry is unpredictable.

Updating Control Register 15

Bits 1-28 of the 31-bit home virtual address of the
entry descriptor of the new linkage-stack entry are
placed in bit positions 1-28 of control register 15,
the linkage-stack-entry address. Zeros are placed
in bit positions 0 and 29-31 of control register 15.
Thus, the new entry becomes the current linkage-
stack-entry.

5-72 ESA/390 Principles of Operation

Recognition of Exceptions during the
Stacking Process

The exceptions which can be encountered during
the stacking process and their priority are
described in the definitions of the BRANCH AND
STACK, PROGRAM CALL, and PROGRAM CALL
FAST instructions.

Programming Note: Any exception recognized
during the execution of BRANCH AND STACK
and PROGRAM CALL (and PROGRAM CALL
FAST) causes either nullification or suppression.
Therefore, if an exception is recognized, the
stacking process does not store into any linkage-
stack entry or change the contents of control reg-
ister 15.

Unstacking Process

The unstacking process is performed as part of
the PROGRAM RETURN operation. The process
locates the last state entry in the linkage stack,
restores a portion of the information in the entry to
the CPU registers, updates the next-entry-size
field in the preceding entry, and updates the
linkage-stack-entry address in control register 15
so that the preceding entry becomes the current
linkage-stack entry. The part of the unstacking
process that locates the last state entry is also
performed as part of the EXTRACT STACKED
REGISTERS, EXTRACT STACKED STATE, and
MODIFY STACKED STATE operations.

For the unstacking process to be performed suc-
cessfully, the address-space-function control, bit
15 of control register 0, must be one, DAT must
be on, and the CPU must be in the primary-space
mode or access-register mode; otherwise, a
special-operation exception is recognized, and the
operation is suppressed. However, when the
unstacking process is performed as part of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the CPU may be in the primary-space,
access-register, or home-space mode.

Except as just mentioned, the unstacking process
is performed independent of the current
addressing mode and translation mode, as speci-
fied by bits 32, 16, and 17 of the current PSW. All
addresses used during the unstacking process are
always 31-bit home virtual addresses.

During the unstacking process when any address
is formed through the addition or subtraction of a

value to or from another address, a carry out of,
or a borrow into, bit position 1 of the address, if
any, is ignored.

When the unstacking process fetches or stores by
using an address that designates, after translation,
a location that is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed.

Key-controlled protection does not apply to the
accesses made during the unstacking process, but
page protection and low-address protection do
apply. A protection exception causes the opera-
tion to be suppressed.

Locating the Current Entry and
Processing a Header Entry

The linkage-stack-entry address in control register
15 is used to locate the current linkage-stack
entry. Bits 1-28 of control register 15, with three
zeros appended on the right, form the 31-bit home
virtual address of the leftmost byte of the entry
descriptor of the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 31-bit
home virtual address. If the entry-type code in
bits 1-7 of the entry descriptor is not 0000001
binary, indicating that the entry is not a header
entry, processing continues as described in
[‘Checking for a State Entry” on page 5-74} other-
wise, processing continues as described below.

When the entry-type code in the current linkage-
stack entry is 0000001 binary, indicating a header
entry, the next processing depends on which
instruction is being executed. When the
unstacking process is performed as part of the
PROGRAM RETURN operation and the unstack-
suppression bit, bit 0, in the entry descriptor of the
current entry is one, a stack-operation exception is
recognized, and the operation is nullified. When
the unstacking process is performed as part of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the unstack-suppression bit is ignored.

When there is not an exception due to the
unstack-suppression bit, the second word of the
current linkage-stack entry (a header entry) is
fetched. The address of this word is determined

by subtracting 4 from the address of the entry
descriptor of the current entry.

If the backward stack-entry validity bit, bit 32, of
the current entry is zero, a stack-empty exception
is recognized, and the operation is nullified; other-
wise, the backward stack-entry address in the
current entry is used to locate a linkage-stack
entry referred to here as the designated entry.
Bits 33-60 of the current entry, with three zeros
appended on the right, form the 31-bit home
virtual address of the leftmost byte of the entry
descriptor of the designated entry.

It is assumed in this definition of the unstacking
process that the designated linkage-stack entry is
the last entry, other than the trailer entry, in the
preceding linkage-stack section. This assumption
does not imply any processing that is not explicitly
described.

The first word of the entry descriptor of the desig-
nated entry is fetched. If the entry-type code in
this entry descriptor is not 0000001 binary, indi-
cating that the entry is not a header entry, the fol-
lowing occurs:

¢ When the unstacking process is performed as
part of the PROGRAM RETURN operation,
bits 1-28 of the 31-bit home virtual address of
the entry descriptor of the designated entry
are placed in bit positions 1-28 of control reg-
ister 15, and zeros are placed in bit positions
0 and 29-31 of control register 15. Thus, the
designated entry becomes the current linkage-
stack entry, and the preceding section (based
on the assumption) becomes the current
linkage-stack section. When the unstacking
process is performed as part of EXTRACT
STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the contents of control register 15
remain unchanged, but the designated entry is
temporarily, during the remainder of the defi-
nition of the instruction, referred to as the
current linkage-stack entry.

e Processing continues as described in
[‘Checking for a State Entry” on page 5-74]

If the entry-type code in the designated entry is
0000001 binary, indicating a header entry, a
stack-specification exception is recognized, and
the operation is nullified.

Chapter 5. Program Execution 5-73

Checking for a State Entry

When the entry-type code in the current linkage-
stack entry indicates that the entry is not a header
entry, the code is checked for being 0000100 or
0000101 binary, which are the codes assigned to
a state entry.

If the current linkage-stack entry is a state entry,
the next processing depends on which instruction
is being executed. When the unstacking process
is performed as part of the PROGRAM RETURN
operation, processing continues as described in
[‘Restoring Information.” When the| process is per-
formed as part of EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, or MODIFY
STACKED STATE, the process is completed; that
is, no additional processing occurs as a part of the
unstacking process.

If the current linkage-stack entry is not a state
entry (and necessarily not a header entry either),
a stack-type exception is recognized, and the
operation is nullified.

Restoring Information
The remaining parts of the unstacking process
occur only in the PROGRAM RETURN operation.

The current linkage-stack entry is a state entry. If
the unstack-suppression bit in the entry is one, a
stack-operation exception is recognized, and the
operation is nullified.

When there is not an exception due to the
unstack-suppression bit, a portion of the contents
of the current linkage-stack entry are restored to
the CPU registers. The contents of general regis-
ters 2-14 and access registers 2-14 are restored
to those registers from where they were saved in
the current entry by the stacking process. When
the entry-type code in the current entry is 0000101
binary, indicating a program-call state entry, the
PSW-key mask and secondary ASN in control reg-
ister 3, extended authorization index in control
register 8, and primary ASN in control register 4
are similarly restored. During this restoration, the
authorization index in control register 4 and the
monitor masks in control register 8 remain
unchanged. (The authorization index may be
changed by the part of the PROGRAM RETURN
execution that occurs after the unstacking

5-74 ESA/390 Principles of Operation

process.) When the entry-type code is 0000100
binary, indicating a branch state entry, the
PSW-key mask, secondary ASN, extended author-
ization index, and primary ASN in the current entry
are ignored, and all contents of the control regis-
ters remain unchanged. When the current entry is
either a branch state entry or a program-call state
entry, the current PSW is restored from bytes
136-143 of the entry, except that the PER mask
and the condition code are not restored. The PER
mask in the current PSW remains unchanged, and
the condition code is set to a unpredictable value.
Bytes 144-159 of the current entry are ignored.

The fetches from the current entry appear to be
word-concurrent as observed by other CPUs. The
order in which the fetches occur is unpredictable.

Updating the Preceding Entry

Zeros are stored in the next-entry-size field, bits
32-47, of the entry descriptor of the preceding
linkage-stack entry. The remainder of the pre-
ceding entry remains unchanged. The address of
the entry descriptor of the preceding entry is
determined by subtracting the size in bytes of the
current entry from the address of the entry
descriptor of the current entry.

The order of the store into the preceding entry and
the fetches from the current entry is unpredictable.

Updating Control Register 15

Bits 1-28 of the 31-bit home virtual address of the
entry descriptor of the preceding linkage-stack
entry are placed in bit positions 1-28 of control
register 15, the linkage-stack-entry address.
Zeros are placed in bit positions 0 and 29-31 of
control register 15. Thus, the preceding entry
becomes the current linkage-stack entry.

Recognition of Exceptions during the
Unstacking Process

The exceptions which can be encountered during
the unstacking process and their priority are
described in the definiton of the PROGRAM
RETURN instruction. The exceptions which apply
to EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE are described in the definitions of those
instructions.

Programming Notes:

1. Any exceptions recognized during the exe-
cution of EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN
cause either nullification or suppression.
Therefore, if an exception is recognized, the
unstacking process does not change the con-
tents of any CPU register (except for updating
the instruction address in the PSW in the case
of suppression) or store into any linkage-stack
entry.

2. The unstacking process in PROGRAM
RETURN does not restore the PER mask in
the PSW so that an act of turning PER on or
off after the execution of the related BRANCH
AND STACK or PROGRAM CALL instruction
but before the execution of the PROGRAM
RETURN instruction will not be counteracted.
When PROGRAM CALL or PROGRAM
RETURN is space switching, the space-switch
event can be used as a signal to turn PER on
or off, if desired.

Sequence of Storage References

The following sections describe the effects which
can be observed in storage due to overlapped
operations and piecemeal execution of a CPU
program. Most of the effects described in these
sections are observable only when two or more
CPUs or channel programs are in simultaneous
execution and access common storage locations.
Thus, most of the effects need be taken into
account by a program only if the program interacts
with another CPU or a channel program.

Some of the effects described in the following
sections are independent of interaction with
another CPU or a channel program. These
effects, which are therefore more readily observ-
able, relate to prefetched instructions and overlap-
ping operands of a single instruction. These

effects are described in [‘Conceptual Sequence’]

and in |“Inter|ocks for VirtuaI-Storaﬁe References’

on page 5-76

Conceptual Sequence

In the real mode, primary-space mode, or
secondary-space mode, the CPU conceptually
processes instructions one at a time, with the exe-
cution of one instruction preceding the execution
of the following instruction. The execution of the
instruction designated by a successful branch
follows the execution of the branch. Similarly, an
interruption takes place between instructions or,
for interruptible instructions, between units of oper-
ation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation of instruction execution appears to
the program itself to be performed sequentially,
with the current instruction being fetched after the
preceding operation is completed and before the
execution of the current operation is begun. This
appearance is maintained even though the
storage-implementation characteristics and overlap
of instruction execution with storage accessing
may cause actual processing to be different. The
results generated are those that would have been
obtained had the operations been performed in
the conceptual sequence. Thus, it is possible for
an instruction to modify the next succeeding
instruction in storage.

Operations in the access-register mode or home-
space mode are the same as in the other trans-
lation modes, with one exception: an instruction
that is a store-type operand of a preceding instruc-
tion may appear to be fetched before the store
occurs. Thus, it is not assured that an instruction
can modify the succeeding instructions. This
exception applies if either the storing instruction or
the instruction stored is executed in the access-
register or home-space mode.

Regardless of the translation mode, there are two
other cases in which the copies of prefetched
instructions are not necessarily discarded:
(1) when the fetch and the store are done by
means of different effective addresses that map to
the same real address, and (2) when the store is
caused by the execution of a vector-facility instruc-
tion. The case involving different effective
addresses is described in more detail in [Inter-

locks for Virtual-Storage References” on

bage 5-76

Chapter 5. Program Execution 5-75

Overlapped Operation of Instruction
Execution

In simple models in which operations are not over-
lapped, the conceptual and actual sequences are
essentially the same. However, in more complex
machines, overlapped operation, buffering of oper-
ands and results, and execution times which are
comparable to the propagation delays between
units can cause the actual sequence to differ con-
siderably from the conceptual sequence. In these
machines, special circuitry is employed to detect
dependencies between operations and ensure that
the results obtained, as observed by the CPU
which generates them, are those that would have
been obtained if the operations had been per-
formed in the conceptual sequence. However,
other CPUs and channel programs may, unless
otherwise constrained, observe a sequence that
differs from the conceptual sequence.

Divisible Instruction Execution

It can normally be assumed that the execution of
each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists in a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and
some delay may occur between fetching operands
and storing results. As a consequence, interme-
diate or partially completed results may be observ-
able by other CPUs and by channel programs.

When a program interacts with the operation on
another CPU, or with a channel program, the
program may have to take into consideration that
a single operation may consist in a series of
storage references, that a storage reference may
in turn consist in a series of accesses, and that
the conceptual and observed sequences of these
accesses may differ.

Storage references associated with instruction
execution are of the following types: instruction
fetches, ART-table and DAT-table fetches, and
storage-operand references. For the purpose of
describing the sequence of storage references,
accesses to storage in order to perform ASN
translation, PC-number translation, tracing, and
the linkage-stack stacking and unstacking proc-
esses are considered to be storage-operand refer-
ences.

5-76 ESA/390 Principles of Operation

Programming Note: The sequence of execution
of a CPU may differ from the simple conceptual
definition in the following ways:

e As observed by the CPU itself, instructions
may appear to be prefetched in the access-
register or home-space mode regardless of
whether the mode exists at the time of the
conceptual store or during the execution of the
prefetched instruction. They may also appear
to be prefetched because of a vector-facility
store or when different effective addresses are
used. (See [Interlocks for Virtual-Storage|

References.”

¢ As observed by other CPUs and by channel
programs, the execution of an instruction may
appear to be performed as a sequence of
piecemeal steps. This is described for each
type of storage reference in the following
sections.

¢ As observed by other CPUs and by channel
programs, the storage-operand accesses
associated with one instruction are not neces-
sarily performed in the conceptual sequence.
(See [Relation between Operand Accesses’]
fon page 5-86])

¢ As observed by channel programs, in certain
unusual situations, the contents of storage
may appear to change and then be restored

to the original value. (See [‘Storage Change
land_Restoration for DAT-Associated Access]
[Exceptions” on page 5—1§|.)

Interlocks for Virtual-Storage
References

As described in the immediately preceding
sections, CPU operation appears, with certain
exceptions, to be performed sequentially as
observed by the CPU itself; the stores performed
by one instruction generally appear to be com-
pleted before the next instruction and its operands
are fetched. This appearance is maintained in
overlapped machines by means of interlock circu-
itry that detects accesses to a common storage
location.

For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
that are obtained when the operands overlap in
storage, this definition being in terms of a
sequence of stores and fetches. The interlock cir-

cuitry is used in determining whether operand
overlap exists.

The purpose of this section is to define those
cases in which the machine must appear to
operate sequentially, and in which operands of a
single instruction must or must not be treated as
overlapping.

Proper operation is provided in part by comparing
effective addresses. For the purpose of this defi-
nition, the term “effective address” means an
address before translation, if any, regardless of
whether the address is virtual, real, or absolute. If
two effective addresses have the same value, the
effective addresses are said to be the same even
though one may be real or in a different address
space.

The values of two virtual effective addresses do
not necessarily indicate whether or not the
addresses designate the same storage location.
The address-translation tables may be set up so
that different effective addresses map to the same
real address, or so that the same effective
address in different address spaces maps to dif-
ferent real addresses.

The interlocks for virtual-storage references are
considered in two situations: storage references
of one instruction as they affect storage refer-
ences of another instruction, and multiple storage
references of a single instruction.

Interlocks between Instructions

As observed by the CPU itself, the storage
accesses for operands for each instruction appear
to occur in the conceptual sequence independent
of the effective address used. That is, the
operand stores for one instruction appear to be
completed before the operand fetches for the next
instruction occur. For instruction fetches, the
operand stores for one instruction necessarily
appear to be completed before the next instruction
is fetched only when the same effective address is
used for the operand store and the instruction
fetch, and then only in the real mode, primary-
space mode, or secondary-space mode and when
the store is not done by the vector facility.

When an instruction changes the contents of a
main-storage location in which a conceptually sub-
sequent instruction is to be executed, either
directly or by means of EXECUTE, and when dif-

ferent effective addresses are used to designate
that location for storing the result and fetching the
instruction, the instruction may appear to be
fetched before the store occurs. When either the
storing instruction or the subsequent instruction is
executed in the access-register mode or home-
space mode or when the store is done by the
vector facility, changes to the contents of storage
are not necessarily recognized even if the effec-
tive address used to store the value and the effec-
tive address used to fetch the instruction are the
same. If an intervening operation causes the pre-
fetched instructions to be discarded, then the
updated value is recognized. A definition of when
prefetched instructions must be discarded is
included in FInstruction Fetching” on page 5-79]

Any change to the storage key appears to be
completed before the conceptually following refer-
ence to the associated storage block is made,
regardless of whether the reference to the storage
location is made by means of a virtual, real, or
absolute address. Analogously, any conceptually
prior references to the storage block appear to be
completed when the key for that block is changed
or inspected.

Interlocks within a Single Instruction

For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
which are obtained when the operands overlap in
storage. This result is normally defined in terms
of the sequence of the storage accesses; that is, a
portion of the results of a store-type operand must
appear to be placed in storage before some
portion of the other operand is fetched. This defi-
nition applies provided that the store and fetch
accesses are specified by means of the same
effective addresses and the same effective space
designations.

When multiple address spaces are involved in the
access-register mode, the term “effective space
designation” is used to denote the value used by
the machine to determine whether two spaces are
the same. In the access-register mode, the 32-bit
access-list-entry-token (ALET) value associated
with each storage-operand address is called the
effective space designation. When a B field of
zero is specified, a value of all zeros is used for
the effective space designation. If the effective
space designations are different, the spaces are

Chapter 5. Program Execution 5-77

considered to be different even if both ALETs map
to the same segment-table-designation value.

When the store and the fetch accesses are speci-
fied by means of different effective space desig-
nations or by means of different effective
addresses, the operand fetch may appear to
precede the operand store.

[Figure 5-10 on page 5-79| summarizes the cases
of overlap and the specified results, including
when MOVE LONG (MVCL) sets condition code 3,
for each case. Effective space designations may
be represented by ALB entries, and the test for
whether two effective space designations are the
same may be performed by comparing ALB
entries. If the program changes an attached and
valid ART-table entry without subsequently
causing the execution of PURGE ALB, two effec-
tive space designations that are the same may
have different representations in the ALB, and
failure to recognize operand overlap may result.
The use of the ALB never causes overlap to be
recognized when the effective space designations
are different.

Programming Note: A single main-storage
location can be accessed by means of more than
one address in several ways:

1. The DAT tables may be set up such that mul-
tiple addresses in a single address space, or
addresses in different address spaces, map to
a single real address.

2. The translation of logical, instruction, and
virtual addresses may be changed by loading
the DAT parameters in the control registers,
by changing the address-space-control bits in
the PSW, or, for logical and instruction
addresses, by turning DAT on or off.

3. In the access-register mode, different address
spaces may be selected by means of each
access register. In addition, the primary
address space is selected for instruction
fetching and the target of EXECUTE.

4. STORE USING REAL ADDRESS performs a
store by means of a real address.

5. Certain other instructions also use real
addresses, and the instructions MOVE TO
PRIMARY and MOVE TO SECONDARY
access two address spaces.

5-78 ESA/390 Principles of Operation

6. Accesses to storage for the purpose of storing
and fetching information for interruptions is
performed by means of real addresses, and,
for the store-status function, by means of
absolute addresses, whereas accesses by the
program may be by means of Vvirtual
addresses.

7. The real-to-absolute mapping may be
changed by means of the SET PREFIX
instruction or a reset.

8. A main-storage location may be accessed by
channel programs by means of an absolute
address and by the CPU by means of a real
or a virtual address.

9. A main-storage location may be accessed by
another CPU by means of one type of
address and by this CPU by means of a dif-
ferent type of address.

The primary purpose of this section on interlocks
is to describe the effects caused in cases 1, 3,
and 4, above.

For case 2, no effect is observable because pre-
fetched instructions are discarded when the trans-
lation parameters are changed, and the delay of
stores by a CPU is not observable by the CPU
itself.

For case 5, for those instructions which fetch by
using real addresses (for example, LOAD REAL
ADDRESS, which fetches a segment-table entry
and a page-table entry), no effect is observable
because only operand accesses between
instructions are involved. All instructions that
store by using a real address, except STORE
USING REAL ADDRESS (or vector-facility
instructions executed with DAT off), or that store
across address spaces, except in the access-
register mode, cause prefetched instructions to be
discarded, and no effect is observable.

Cases 6 and 7 are situations which are defined to
cause serialization, with the result that prefetched
instructions are discarded. In these cases, no
effect is observable.

The handling of cases 8 and 9 involves accesses
as observed by other CPUs and by channel pro-
grams and is covered in the following sections in
this chapter.

Effective Effective Operands Is Overlap Recognized?
Space Addresses Overlap
Designations |Overlap Destructively MVCL Sets| Operand
Equal? Destructively?|in Real Storage?| CC 3 Results
Yes No No No No
Yes No Yes No Unp.
Yes Yes No * *
Yes Yes Yes Yes Yes
No No No No No
No No Yes No Unp.
No Yes No No No
No Yes Yes No Unp.
Explanation:
* This case cannot occur.
Unp. It is unpredictable whether or not the overlap is recognized.

Figure 5-10. Virtual-Storage Interlocks within a Single Instruction

Instruction Fetching

Instruction fetching consists in fetching the one,
two, or three halfwords designated by the instruc-
tion address in the current PSW. The immediate
field of an instruction is accessed as part of an
instruction fetch. If, however, an instruction desig-
nates a storage operand at the location occupied
by the instruction itself, the location is accessed
both as an instruction and as a storage operand.
The fetch of the target instruction of EXECUTE is
considered to be an instruction fetch.

The bytes of an instruction may be fetched piece-
meal and are not necessarily accessed in a left-to-
right direction. The instruction may be fetched
multiple times for a single execution; for example,
it may be fetched for testing the addressability of
operands or for inspection of PER events, and it
may be refetched for actual execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched each time they
are executed. In particular, the fetching of an
instruction may precede the storage-operand ref-
erences for an instruction that is conceptually
earlier. The instruction fetch occurs prior to all
storage-operand references for all instructions that
are conceptually later.

An instruction may be prefetched by using a
virtual address only when the associated DAT
table entries are attached and valid or when
entries which qualify for substitution for the table

entries exist in the TLB. An instruction that has
been prefetched may be interpreted for execution
only for the same virtual address for which the
instruction was prefetched.

No limit is established on the number of
instructions which may be prefetched, and multiple
copies of the contents of a single storage location
may be fetched. As a result, the instruction exe-
cuted is not necessarily the most recently fetched
copy. Storing caused by other CPUs and by
channel programs does not necessarily change
the copy of prefetched instructions. However, if a
non-vector-facility store that is conceptually earlier
is made by the same CPU using the same effec-
tive address as that by which the instruction is
subsequently fetched, and the CPU is in any of
the real, primary-space, and secondary-space
modes when the the storing instruction is exe-
cuted and is in any of those modes when the sub-
sequent instruction is executed, the updated
information is obtained. If the store is caused by
a vector-facility instruction, if the effective
addresses are different, or if the CPU is in the
access-register mode or home-space mode during
either the storing execution or the execution of the
instruction that is the destination of the store, the
updated information is not necessarily obtained.
However, the updated information is obtained if
either execution is in the real mode since pre-
fetched instructions are discarded if DAT is turned
on or off.

All copies of prefetched instructions are discarded
when:

5-79

Chapter 5. Program Execution

¢ A serializing function is performed.

The CPU enters the operating state.

e DAT is turned on or off.

¢ A change is made to a translation parameter
in control register 1 when in the primary-
space, secondary-space, or access-register
mode, or in control register 13 when in the
home-space mode.

The SET ADDRESS SPACE CONTROL instruc-
tion can change the translation mode between any
of the primary-space, secondary-space, access-
register, and home-space modes, and it performs
serialization. The SET ADDRESS SPACE
CONTROL FAST instruction can perform the
same mode changes, but it does not serialize.

Programming Notes:

1. As observed by a CPU itself, its own instruc-
tion prefetching may be apparent when storing
is done by the vector facility, when different
effective addresses map to a single real
address, or when the CPU is in the access-
register or home-space mode. This is

described in [‘Conceptual Sequence” on

|§a§e 5-75 and Finterlocks for Virtual-Storage

[References” on page 5-76.

2. Any means of changing PSW bits 16 and 17,
except the SET ADDRESS SPACE
CONTROL FAST instruction, causes serializa-
tion to be performed and prefetched
instructions to be discarded. Turning DAT on
or off causes prefetched instructions to be dis-
carded. Therefore, any change of the trans-
lation mode, except a change made by SET
ADDRESS SPACE CONTROL FAST, always
causes prefetched instructions to be dis-
carded.

3. The following are some effects of instruction
prefetching on one CPU as observed by other
CPUs and by channel programs.

It is possible for one CPU to prefetch the con-
tents of a storage location, after which another
CPU or a channel program can change the
contents of that storage location and then set
a flag to indicate that the change has been
made. Subsequently, the first CPU can test
and find the flag set, branch to the modified
location, and execute the original prefetched
contents.

It is possible, if another CPU or a channel
program concurrently modifies the instruction,

5-80 ESA/390 Principles of Operation

for one CPU to recognize the changes to
some but not all bit positions of an instruction.

It is possible for one CPU to prefetch an
instruction and subsequently, before the
instruction is executed, for another CPU to
change the storage key. As a result, the first
CPU may appear to execute instructions from
a protected storage location. However, the
copy of the instructions executed is the copy
prefetched before the location was protected.

ART-Table and DAT-Table
Fetches

The access-register-translation (ART) table entries
are access-list designations, access-list entries,
ASN-second-table entries, and authority-table
entries. The dynamic-address-translation (DAT)
table entries are segment-table entries and page-
table entries. The fetching of these entries may
occur as follows:

1. An ART-table entry may be prefetched into
the ART-lookaside buffer (ALB) and used from
the ALB without refetching from storage, until
the entry is cleared by a PURGE ALB or SET
PREFIX instruction or by CPU reset. A
DAT-table entry may be prefetched into the
translation-lookaside buffer (TLB) and used
from the TLB without refetching from storage,
until the entry is cleared by an INVALIDATE
PAGE TABLE ENTRY, PURGE TLB, or SET
PREFIX instruction or by CPU reset.
ART-table and DAT-table entries are not nec-
essarily fetched in the sequence conceptually
called for; they may be fetched at any time
they are attached and valid, including during
the execution of conceptually previous
instructions.

2. The fetching of access-list designations,
access-list entries, ASN-second-table entries,
and DAT-table entries appears to be word-
concurrent as observed by other CPUs.
However, the reference to an entry may
appear to access a single byte at a time as
observed by channel programs.

3. The order in which the words of an access-list
entry or ASN-second-table entry are fetched is
unpredictable, except that the leftmost word of
an entry is fetched first. However, the left-
most word of an ASN-second-table entry is
not fetched when access-list-entry token

00000000 hex is translated for BRANCH IN
SUBSPACE GROUP.

4. An ART-table or DAT-table entry may be
fetched even after some operand references
for the instruction have already occurred. The
fetch may occur as late as just prior to the
actual byte access requiring the ART-table or
DAT-table entry.

5. An ART-table or DAT-table entry may be
fetched for each use of the address, including
any trial execution, and for each reference to
each byte of each operand.

6. The DAT page-table-entry fetch precedes the
reference to the page. When no copy of the
page-table entry is in the TLB, the fetch of the
associated segment-table entry precedes the
fetch of the page-table entry.

7. When no copy of a segment-table entry desig-
nated by means of an ART-obtained segment-
table designation is in the TLB, the ART fetch
of the ASN-second-table entry precedes the
DAT segment-table-entry fetch. When no
copy of a required authority-table entry is in
the ALB, the ART fetch of the associated
ASN-second-table entry precedes the fetch of
the authority-table entry. When no copy of a
required ASN-second-table entry is in the
ALB, the fetch of the associated access-list
entry precedes the fetch of the
ASN-second-table entry. When no copy of a
required access-list entry is in the ALB, the
fetch of the associated access-list designation
precedes the fetch of the access-list entry.

Storage-Key Accesses

References to the storage key are handled as
follows:

1. Whenever a reference to storage is made and
key-controlled protection applies to the refer-
ence, the four access-control bits and the
fetch-protection bit associated with the storage
location are inspected concurrently with the
reference to the storage location.

2. When storing is performed, the change bit is
set in the associated storage key concurrently
with the store operation.

3. The instruction SET STORAGE KEY
EXTENDED causes all seven bits to be set
concurrently in the storage key. The access

to the storage key for SET STORAGE KEY
EXTENDED follows the sequence rules for
storage-operand store references and is a
single-access reference.

4. The INSERT STORAGE KEY EXTENDED
instruction provides a consistent image of bits
0-6 of the storage Kkey. Similarly, the
instructions INSERT VIRTUAL STORAGE
KEY and TEST PROTECTION provide a con-
sistent image of bits 0-4 of the storage key.
The access to the storage key for all of these
instructions follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

5. The instruction RESET REFERENCE BIT
EXTENDED modifies only the reference bit.
All other bits of the storage key remain
unchanged. The reference bit and change bit
are examined concurrently to set the condition
code. The access to the storage key for
RESET REFERENCE BIT EXTENDED follows
the sequence rules for storage-operand
update references. The reference bit is the
only bit which is updated.

The record of references provided by the refer-
ence bit is not necessarily accurate, and the han-
dling of the reference bit is not subject to the
concurrency rules. However, in the majority of sit-
uations, reference recording approximately coin-
cides with the storage reference.

The change bit may be set in cases when no

storing has occurred. See [‘Exceptions _to|
[Nullification and Suppression” on page 5-18.

Storage-Operand References

A storage-operand reference is the fetching or
storing of the explicit operand or operands in the
storage locations designated by the instruction.

During the execution of an instruction, all or some
of the storage operands for that instruction may be
fetched, intermediate results may be maintained
for subsequent modification, and final results may
be temporarily held prior to placing them in
storage. Stores caused by other CPUs and by
channel programs do not necessarily affect these
intermediate results.

Storage-operand references are of three types:
fetches, stores, and updates.

Chapter 5. Program Execution 5-81

Storage-Operand Fetch References

When the bytes of a storage operand participate
in the instruction execution only as a source, the
operand is called a fetch-type operand, and the
reference to the location is called a storage-
operand fetch reference. A fetch-type operand is
identified in individual instruction definitions by
indicating that the access exception is for fetch.

All bits within a single byte of a fetch reference
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
fetched from storage piecemeal, one byte at a
time. Unless otherwise specified, the bytes are
not necessarily fetched in any particular sequence.

The storage-operand fetch references of one
instruction occur after those of all preceding
instructions and before those of subsequent
instructions, as observed by other CPUs and by
channel programs. The operands of any one
instruction are fetched in the sequence specified
for that instruction. The CPU may fetch the oper-
ands of instructions before the instructions are
executed. There is no defined limit on the length
of time between when an operand is fetched and
when it is used. Still, as observed by the CPU
itself, its storage-operand references are per-
formed in the conceptual sequence.

Storage-Operand Store References

When the bytes of a storage operand participate
in the instruction execution only as a destination,
to the extent of being replaced by the result, the
operand is called a store-type operand, and the
reference to the location is called a storage-
operand store reference. A store-type operand is
identified in individual instruction definitions by
indicating that the access exception is for store.

All bits within a single byte of a store reference
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
placed in storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not nec-
essarily stored in any particular sequence.

The CPU may delay placing results in storage.
There is no defined limit on the length of time that
results may remain pending before they are
stored. This delay does not affect the sequence
in which results are placed in storage.

5-82 ESA/390 Principles of Operation

The results of one instruction are placed in
storage after the results of all preceding
instructions have been placed in storage and
before any results of the succeeding instructions
are stored, as observed by other CPUs and by
channel programs. The results of any one instruc-
tion are stored in the sequence specified for that
instruction.

The CPU does not fetch operands, ART-table
entries, or DAT-table entries from a storage
location until all information destined for that
location by the CPU has been stored. Prefetched
instructions may appear to be updated before the
information appears in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the
CPU enters the stopped state.

Storage-Operand Update References

In some instructions, the storage-operand location
participates both as a source and as a destination.
In these cases, the reference to the location con-
sists first in a fetch and subsequently in a store.
The operand is called an update-type operand,
and the combination of the two accesses is
referred to as an update reference. Instructions
such as MOVE ZONES, TRANSLATE, OR (OC,
Ol), and ADD DECIMAL cause an update to the
first-operand location. An update-type operand is
identified in the individual instruction definition by
indicating that the access exception is for both
fetch and store.

For most instructions which have update-type
operands, the fetch and store accesses associ-
ated with an update reference do not necessarily
occur one immediately after the other, and it is
possible for other CPUs and channel programs to
make fetch and store accesses to the same
location during this time. Such an update refer-
ence is sometimes called a noninterlocked-update
storage reference.

For certain special instructions, the update refer-
ence is interlocked against certain accesses by
other CPUs. Such an update reference is called
an interlocked-update reference. The fetch and
store accesses associated with an interlocked-
update reference do not necessarily occur one
immediately after the other, but all store accesses
and the fetch and store accesses associated with
interlocked-update references by other CPUs are

prevented from occurring at the same location
between the fetch and the store accesses of an
interlocked-update reference. Accesses by
channel programs may occur to the location
during the interlock period.

The storage-operand update reference for the fol-
lowing instructions appears to be an interlocked-
update reference as observed by other CPUs.
The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP perform an interlocked-update reference.
On models in which the STORE CHARACTERS
UNDER MASK instruction with a mask of zero
fetches and stores the byte designated by the
second-operand address, the fetch and store
accesses are an interlocked-update reference.

Within the limitations of the above requirements,
the fetch and store accesses associated with an
update reference follow the same rules as the
fetches and stores described in the previous
sections.

Programming Notes:

1. When two CPUs attempt to update information
at a common main-storage location by means
of a noninterlocked-update reference, it is pos-
sible for both CPUs to fetch the information
and subsequently make the store access.
The change made by the first CPU to store
the result in such a case is lost. Similarly, if
one CPU updates the contents of a field by
means of a noninterlocked-update reference,
but another CPU makes a store access to that
field between the fetch and store parts of the
update reference, the effect of the store is
lost. If, instead of a store access, a CPU
makes an interlocked-update reference to the
common storage field between the fetch and
store portions of a noninterlocked-update ref-
erence due to another CPU, any change in
the contents produced by the interlocked-
update reference is lost.

2. The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP facilitate updating of a common
storage field by two or more CPUs. To
ensure that no changes are lost, all CPUs
must use an instruction providing an
interlocked-update reference. In addition, the
program must ensure that channel programs

do not store into the same storage location
since such stores may occur between the
fetch and store portions of an interlocked-
update reference.

3. Only those bytes which are included in the
result field of both operations are considered
to be part of the common main-storage
location. However, all bits within a common
byte are considered to be common even if the
bits modified by the two operations do not
overlap. As an example, if (1) one CPU exe-
cutes the instruction OR (OC) with a length of
1 and the value 80 hex in the second-operand
location, (2) the other CPU executes AND
(NC) with a length of 1 and the value FE hex
in the second-operand location, and (3) the
first operand of both instructions is the same
byte, then the result of one of the updates can
be lost.

4. When the store access is part of an update
reference by the CPU, the execution of the
storing is not necessarily contingent on
whether the information to be stored is dif-
ferent from the original contents of the
location. In particular, the contents of all des-
ignated byte locations are replaced, and, for
each byte in the field, the entire contents of
the byte are replaced.

Depending on the model, an access to store
information may be performed, for example, in
the following cases:

a. Execution of the OR instruction (Ol or OC)
with a second operand of all zeros.

b. Execution of OR (OC) with the first-and
second-operand fields coinciding.

c. For those locations of the first operand of
TRANSLATE where the argument and
function values are the same.

Storage-Operand Consistency

Single-Access References

A fetch reference is said to be a single-access ref-
erence if the value is fetched in a single access to
each byte of the data field. In the case of overlap-
ping operands, the location may be accessed
once for each operand. A store-type reference is
said to be a single-access reference if a single
store access occurs to each byte location within
the data field. An update reference is said to be

Chapter 5. Program Execution 5-83

single access if both the fetch and store accesses
are each single access.

Except for the accesses associated with multiple-
access references and the stores associated with
storage change and restoration for
DAT-associated access exceptions, all storage-
operand references are single-access references.

Multiple-Access References

In some cases, multiple accesses may be made to
all or some of the bytes of a storage operand.
The following cases may involve multiple-access
references:

1. The storage operands of the following
instructions: CONVERT TO BINARY,
CONVERT TO DECIMAL, MOVE INVERSE,
MOVE WITH OFFSET, PACK, TRANSLATE,
TEST BLOCK, UNPACK, and UPDATE
TREE.

2. The stores into that portion of the first operand
of MOVE LONG or MOVE LONG EXTENDED
which is filled with padding bytes.

3. The storage
instructions.

operands of the decimal

4. The stores into a trace entry.

5. The storage
instructions.

operands of vector-facility

6. The stores associated with the stop-and-store-
status, store-status-at-address, and store-
extended-status-at-address SIGNAL
PROCESSOR orders.

7. The storage operands of COMPARE UNTIL
SUBSTRING EQUAL.

8. The trap control block and trap save area
used by TRAP.

When a storage-operand store reference to a
location is not a single-access reference, the value
placed at a byte location is not necessarily the
same for each store access; thus, intermediate
results in a single-byte location may be observed
by other CPUs and by channel programs.

Multiple accesses may be made to all or some of
the bytes of the following:

¢ The trap-control block
¢ The trap-save area

5-84 ESA/390 Principles of Operation

When multiple store references are made to the
trap-save area, the value placed in each byte
location is not necessarily the same for each
access; thus, intermediate results in a single byte
location may be observed by other CPUs and by
channel programs.

Programming Notes:

1. When multiple fetch or store accesses are
made to a single byte that is being changed
by another CPU or by a channel program, the
result is not necessarily limited to that which
could be obtained by fetching or storing the
bits individually. For example, the execution
of MULTIPLY DECIMAL may consist in repeti-
tive additions and subtractions, each of which
causes the second operand to be fetched
from storage and the first operand to be
updated in storage.

2. When CPU instructions which make multiple-
access references are used to modify storage
locations being simultaneously accessed by
another CPU or by a channel program, mul-
tiple store accesses to a single byte by the
CPU may result in intermediate values being
observed by the other CPU or by the channel
program. To avoid these intermediate values
(for example, when modifying a CCW chain),
only instructions making single-access refer-
ences should be used.

Block-Concurrent References

For some references, the accesses to all bytes
within a halfword, word, or doubleword are speci-
fied to appear to be block-concurrent as observed
by other CPUs. These accesses do not neces-
sarily appear to channel programs to include more
than a byte at a time. The halfword, word, or
doubleword is referred to in this section as a
block. When a fetch-type reference is specified to
appear to be concurrent within a block, no store
access to the block by another CPU is permitted
during the time that bytes contained in the block
are being fetched. Accesses to the bytes within
the block by channel programs may occur
between the fetches. When a store-type refer-
ence is specified to appear to be concurrent within
a block, no access to the block, either fetch or
store, is permitted by another CPU during the time
that the bytes within the block are being stored.
Accesses to the bytes in the block by channel pro-
grams may occur between the stores.

—e—e— e e e — —

Consistency Specification

For all instructions in the S, RX, and RXE formats,
with the exception of EXECUTE, CONVERT TO
DECIMAL, CONVERT TO BINARY, and the I/O
instructions, when the operand is addressed on a
boundary which is integral to the size of the
operand, the storage-operand references appear
to be block-concurrent as observed by other
CPUs.

For the instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP, all accesses to
the storage operand appear to be block-
concurrent as observed by other CPUs.

For the instruction PERFORM LOCKED OPERA-
TION, The accesses to the even-numbered
storage operands are word concurrent for function
codes that are a multiple of 4 and doubleword
concurrent for function codes that are one more
than a multiple of 4. The accesses to the
doublewords in the parameter list are doubleword
concurrent regardless of the function code.

The instructions LOAD MULTIPLE and STORE
MULTIPLE, when the operand starts on a word
boundary, and the instructions COMPARE
LOGICAL (CLC), COMPARE LOGICAL CHARAC-
TERS UNDER MASK, INSERT CHARACTERS
UNDER MASK, and STORE CHARACTERS
UNDER MASK access their storage operands in a
left-to-right direction, and all bytes accessed within
each doubleword appear to be accessed concur-
rently as observed by other CPUs.

The instructions LOAD ACCESS MULTIPLE,
LOAD CONTROL, STORE ACCESS MULTIPLE,
and STORE CONTROL access the storage
operand in a left-to-right direction, and all bytes
accessed within each word appear to be accessed
concurrently as observed by other CPUs.

When destructive overlap does not exist, the oper-
ands of MOVE (MVC), MOVE WITH KEY, MOVE
TO PRIMARY, and MOVE TO SECONDARY are
accessed as follows:

1. The first operand is accessed in a left-to-right
direction, and all bytes accessed within a
doubleword appear to be accessed concur-
rently as observed by other CPUs.

2. The second operand is accessed left to right,
and all bytes within a doubleword in the
second operand that are moved into a single

doubleword in the first operand appear to be
fetched concurrently as observed by other
CPUs. Thus, if the first and second operands
begin on the same byte offset within a
doubleword, the fetch of the second operand
appears to be doubleword-concurrent as
observed by other CPUs. If the offsets within
a doubleword differ by 4, the fetch of the
second operand appears to be word-
concurrent as observed by other CPUs.

Destructive overlap is said to exist when the result
location is used as a source after the result has
been stored, assuming processing to be per-
formed one byte at a time.

The operands of MOVE WITH SOURCE KEY,
MOVE WITH DESTINATION KEY, and MOVE
STRING are accessed the same as those of
MOVE (MVC), except that destructive overlap is
assumed not to exist.

The operands for MOVE LONG and MOVE LONG
EXTENDED appear to be accessed doubleword-
concurrent as observed by other CPUs when all of
the following are true:

¢ Both operands start on doubleword bounda-
ries and are an integral number of
doublewords in length.

¢ The operands do not overlap.

¢ The nonpadding part of the operation is being
executed.

The operands for COMPARE LOGICAL LONG
and COMPARE LOGICAL LONG EXTENDED
appear to be accessed doubleword-concurrent as
observed by other CPUs when both operands
start on doubleword boundaries and are an inte-
gral number of doublewords in length.

The operands for COMPARE LOGICAL STRING
appear to be accessed doubleword-concurrent as
observed by other CPUs when both operands
start on doubleword boundaries. The operand for
SEARCH STRING appears to be accessed
doubleword-concurrent as observed by other
CPUs when it starts on a doubleword boundary.

For EXCLUSIVE OR (XC), the operands are proc-
essed in a left-to-right direction, and, when the
first and second operands coincide, all bytes
accessed within a doubleword appear to be
accessed concurrently as observed by other
CPUs.

5-85

Chapter 5. Program Execution

Programming Note: In the case of EXCLUSIVE
OR (XC) designating operands which coincide
exactly, the bytes within the field may appear to
be accessed as many as three times, by two
fetches and one store: once as the fetch portion
of the first operand update, once as the second-
operand fetch, and then once as the store portion
of the first-operand update. Each of the three
accesses appears to be doubleword-concurrent as
observed by other CPUs, but the three accesses
do not necessarily appear to occur one imme-
diately after the other. One or both fetch
accesses may be omitted since the instruction can
be completed without fetching the operands.

Relation between Operand
Accesses

As observed by other CPUs and by channel pro-
grams, storage-operand fetches associated with
one instruction execution appear to precede all
storage-operand references for conceptually sub-
sequent instructions. A storage-operand store
specified by one instruction appears to precede all
storage-operand stores specified by conceptually
subsequent instructions, but it does not neces-
sarily precede storage-operand fetches specified
by conceptually subsequent instructions.
However, a storage-operand store appears to
precede a conceptually subsequent storage-
operand fetch from the same main-storage
location.

When an instruction has two storage operands
both of which cause fetch references, it is unpre-
dictable which operand is fetched first, or how
much of one operand is fetched before the other
operand is fetched. When the two operands
overlap, the common locations may be fetched
independently for each operand.

When an instruction has two storage operands the
first of which causes a store and the second a
fetch reference, it is unpredictable how much of
the second operand is fetched before the results
are stored. In the case of destructively overlap-
ping operands, the portion of the second operand
which is common to the first is not necessarily
fetched from storage.

When an instruction has two storage operands the
first of which causes an update reference and the
second a fetch reference, it is unpredictable which
operand is fetched first, or how much of one

5-86 ESA/390 Principles of Operation

operand is fetched before the other operand is
fetched. Similarly, it is unpredictable how much of
the result is processed before it is returned to
storage. In the case of destructively overlapping
operands, the portion of the second operand
which is common to the first is not necessarily
fetched from storage.

The independent fetching of a single location for
each of two operands may affect the program exe-
cution in the following situation. When the same
storage location is designated by two operand
addresses of an instruction, and another CPU or a
channel program causes the contents of the
location to change during execution of the instruc-
tion, the old and new values of the location may
be used simultaneously. For example, compar-
ison of a field to itself may yield a result other than
equal, or EXCLUSIVE-ORIing of a field with itself
may Yyield a result other than zero.

Other Storage References

The restart, program, supervisor-call, external,
input/output, and machine-check PSWs appear to
be accessed doubleword-concurrent as observed
by other CPUs. These references appear to occur
after the conceptually previous unit of operation
and before the conceptually subsequent unit of
operation. The relationship between the
new-PSW fetch, the old-PSW store, and the
interruption-code store is unpredictable.

Store accesses for interruption codes are not nec-
essarily single-access stores. The store accesses
for the external and supervisor-call-interruption
codes appear to occur between the conceptually
previous and conceptually subsequent operations.
The store accesses for the program-interruption
codes may precede the storage-operand refer-
ences associated with the instruction which results
in the program interruption.

Serialization

The sequence of functions performed by a CPU is
normally independent of the functions performed
by other CPUs and by channel programs. Simi-
larly, the sequence of functions performed by a
channel program is normally independent of the
functions performed by other channel programs
and by CPUs. However, at certain points in its
execution, serialization of the CPU occurs. Serial-

ization also occurs at certain points for channel
programs.

CPU Serialization

All interruptions and the execution of certain
instructions cause a serialization of CPU opera-
tions. A serialization operation consists in com-
pleting all conceptually previous storage accesses
by the CPU, as observed by other CPUs and by
channel programs, before the conceptually subse-
guent storage accesses oOccur. Serialization
affects the sequence of all CPU accesses to
storage and to the storage keys, except for those
associated with ART-table-entry and
DAT-table-entry fetching.

Serialization is performed by CPU reset, all inter-
ruptions, and by the execution of the following
instructions:

e The general instructions BRANCH ON CON-
DITION (BCR) with the M1 and Rz field con-
taining all ones and all zeros, respectively,
and COMPARE AND SWAP, COMPARE
DOUBLE AND SWAP, STORE CLOCK,
SUPERVISOR CALL, and TEST AND SET.

¢ LOAD PSW and SET STORAGE KEY
EXTENDED.

¢ All I/O instructions.

e PURGE ALB, PURGE TLB, and SET PREFIX.
PURGE ALB and SET PREFIX also cause the
ART-lookaside buffer to be cleared of all
entries. PURGE TLB and SET PREFIX also
cause the translation-lookaside buffer to be
cleared of all entries.

* SIGNAL PROCESSOR.
¢ INVALIDATE PAGE TABLE ENTRY.
e TEST BLOCK.

e MOVE TO PRIMARY, MOVE TO SEC-
ONDARY, PROGRAM CALL, PROGRAM
CALL FAST, PROGRAM TRANSFER, SET
ADDRESS SPACE CONTROL, and SET
SECONDARY ASN.

¢ PROGRAM RETURN when the state entry to
be unstacked is a program-call state entry.

¢ PERFORM LOCKED OPERATION. Serializa-
tion is performed immediately after the lock is
obtained and again immediately before it is
released. However, values fetched from the

parameter list before the lock is obtained are
not necessarily refetched.

e The three trace functions — branch tracing,
ASN tracing, and explicit tracing — cause
serialization to be performed before the trace
action and after completion of the trace action.

The sequence of events associated with a serial-
izing operation is as follows:

1. All conceptually previous storage accesses by
the CPU are completed as observed by other
CPUs and by channel programs. This
includes all conceptually previous stores and
changes to the storage keys.

2. The normal function associated with the serial-
izing operation is performed. In the case of
instruction execution, operands are fetched,
and the storing of results is completed. The
exceptions are LOAD PSW and SET PREFIX,
in which the operand may be fetched before
previous stores have been completed, and
interruptions, in which the interruption code
and associated fields may be stored prior to
the serialization. The fetching of the serial-
izing instruction occurs before the execution of
the instruction and may precede the execution
of previous instructions, but may not precede
the completion of any previous serializing
operation. In the case of an interruption, the
old PSW, the interruption code, and other
information, if any, are stored, and the new
PSW is fetched, but not necessarily in that
sequence.

3. Finally, instruction fetch and operand
accesses for conceptually subsequent opera-
tions may begin.

A serializing function affects the sequence of
storage accesses that are under the control of the
CPU in which the serializing function takes place.
It does not affect the sequence of storage
accesses under the control of other CPUs and of
channel programs.

Programming Notes:

1. The following are some effects of a serializing
operation:

a. When the execution of an instruction
changes the contents of a storage location
that is used as a source of a following
instruction and when different addresses
are used to designate the same absolute

Chapter 5. Program Execution 5-87

location for storing the result and fetching
the instruction, a serializing operation fol-
lowing the change ensures that the modi-
fied instruction is executed.

b. When a serializing operation takes place,
other CPUs and channel programs
observe instruction and operand fetching
and result storing to take place in the
sequence established by the serializing
operation.

2. Storing into a location from which a serializing

instruction is fetched does not necessarily
affect the execution of the serializing instruc-
tion unless a serializing function has been per-
formed after the storing and before the
execution of the serializing instruction.

. Following is an example showing the effects
of serialization. Location A initially contains
X'FF'.

CPu 1 CPU 2
MVI A,X'00' G CLI A,X'00'
BCR 15,0 BNE G

The BCR 15,0 instruction executed by CPU
1 is a serializing instruction that ensures that
the store by CPU 1 at location A is completed.
However, CPU 2 may loop indefinitely, or until
the next 1/0 or external interruption on CPU 2,
because CPU 2 may already have fetched
from location A for every execution of the CLI
instruction. A serializing instruction must be in

5-88 ESA/390 Principles of Operation

the CPU-2 loop to ensure that CPU 2 will
again fetch from location A.

Channel-Program Serialization

Serialization of a channel program occurs as
follows:

1. Al storage accesses and storage-key
accesses by the channel program follow initi-
ation of the execution of START SUB-
CHANNEL, or, if suspended, RESUME
SUBCHANNEL, as observed by CPUs and by
other channel programs. This includes all
accesses for the CCWs, IDAWS, and data.

2. Al storage accesses and storage-key
accesses by the channel program are com-
pleted, as observed by CPUs and by other
channel programs, before the subchannel
status indicating status-pending with primary
status is made available to any CPU.

3. If a CCW contains a PCI flag or a suspend
flag which is one, all storage accesses and
storage-key accesses due to CCWSs preceding
it in the CCW chain are completed, as
observed by CPUs and by other channel pro-
grams, before the subchannel status indicating
status-pending with intermediate status (PCI
or suspended) is made available to any CPU.

The serialization of a channel program does not
affect the sequence of storage accesses or
storage-key accesses caused by other channel
programs or by another CPU program.

Chapter 6. Interruptions

Interruption Action 6-2
Interruption Code 6-5
Enabling and Disabling
Handling of Floating Interruption Conditions 6-6

Instruction-Length Code 6-7
ZeroILC 6-7
ILC on Instruction-Fetching Exceptions . 6-7
Exceptions Associated with the PSW . . . 6-9
Early Exception Recognition 6-9
Late Exception Recognition 6-9
External Interruption 6-10
Clock Comparator 6-11
CPU Timer 6-11
Emergency Signal 6-11
ETR 6-12
External Call 6-12
InterruptKey 6-12
Malfunction Alert 6-12
Service Signal 6-12
TOD-Clock Sync Check 6-13
I/O Interruption 6-13
Machine-Check Interruption 6-14
Program Interruption 6-14
Exception-Extension Code 6-15
Data-Exception Code (DXC) 6-15
Priority of Program Interruptions for
Data Exceptions 6-15
Program-Interruption Conditions 6-15
Addressing Exception 6-15
AFX-Translation Exception 6-19
ALEN-Translation Exception 6-19
ALE-Sequence Exception 6-19
ALET-Specification Exception 6-19
ASN-Translation-Specification
Exception 6-19
ASTE-Sequence Exception 6-20
ASTE-Validity Exception 6-20
ASX-Translation Exception 6-21
Data Exception 6-21
Decimal-Divide Exception 6-21
Decimal-Overflow Exception 6-22
Execute Exception 6-22
EX-Translation Exception 6-22

Extended-Authority Exception 6-22
Fixed-Point-Divide Exception 6-22
Fixed-Point-Overflow Exception 6-23
HFP-Divide Exception 6-23
HFP-Exponent-Overflow Exception . . . 6-23
HFP-Exponent-Underflow Exception . . 6-23
HFP-Significance Exception 6-23
HFP-Square-Root Exception 6-24
LX-Translation Exception 6-24
Monitor Event 6-24
Operand Exception 6-25
Operation Exception 6-25
Page-Translation Exception 6-25
PC-Translation-Specification Exception 6-26
PEREvent 6-26
Primary-Authority Exception 6-27
Privileged-Operation Exception 6-27
Protection Exception 6-28
Secondary-Authority Exception 6-28
Segment-Translation Exception 6-29
Space-Switch Event 6-29
Special-Operation Exception 6-30
Specification Exception 6-31
Stack-Empty Exception 6-32
Stack-Full Exception 6-32
Stack-Operation Exception 6-32
Stack-Specification Exception 6-33
Stack-Type Exception 6-33
Trace-Table Exception 6-33
Translation-Specification Exception . . . 6-33
Unnormalized-Operand Exception . . . 6-34
Vector-Operation Exception 6-34
Collective Program-Interruption Names . . 6-34
Recognition of Access Exceptions 6-34
Multiple Program-Interruption Conditions . 6-37
Access Exceptions 6-39
ASN-Translation Exceptions 6-44
Subspace-Replacement Exceptions . . 6-44
Trace Exceptions 6-44
Restart Interruption 6-45
Supervisor-Call Interruption 6-45
Priority of Interruptions 6-45

The interruption mechanism permits the CPU to
change its state as a result of conditions external
to the configuration, within the configuration, or
within the CPU itself. To permit fast response to
conditions of high priority and immediate recogni-

tion of the type of condition, interruption conditions
are grouped into six classes: external,
input/output, machine check, program, restart, and
supervisor call.

© Copyright IBM Corp. 1990, 1991, 1993, 1994, 1996, 1997, 1998, 1999 6-1

Interruption Action

An interruption consists in storing the current PSW
as an old PSW, storing information identifying the
cause of the interruption, and fetching a new
PSW. Processing resumes as specified by the
new PSW.

The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the inter-
rupted program. For program and supervisor-call
interruptions, the information stored also contains
a code that identifies the length of the last-

6-2 ESA/390 Principles of Operation

executed instruction, thus permitting the program
to respond to the cause of the interruption. In the
case of some program conditions for which the
normal response is reexecution of the instruction
causing the interruption, the instruction address
directly identifies the instruction last executed.

Except for restart, an interruption can occur only
when the CPU is in the operating state. The
restart interruption can occur with the CPU in
either the stopped or operating state.

The details of source identification, location deter-
mination, and instruction execution are explained
in later sections and are summarized in
[Figure 6-1 on page 6-3|

Mask Bits
in Ctrl Execution of
PSW- |Registers Instruction
Source Interruption Mask ILC |Identified
Identification Code Bits |Reg, Bit| Set |[by 01d PSW
MACHINE CHECK Locations 232-2391
(o1d PSW 48,
new PSW 112)
Exigent condition 13 u terminated or
nullified?
Repressible cond 13 |14, 3-7 u unaffected?
SUPERVISOR CALL Locations 138-139
(o1d PSW 32,
new PSW 96)
Instruction bits 00000000 sSSSSSSS 1,2 |completed
PROGRAM Locations 142-143
(o1d PSW 40,
new PSW 104) Binary Hex3
Operation 00000000 pOOOOOOL |0O0L 1,2,3|suppressed
Privileged oper 00000000 poOEOO1O |0002 2,3|suppressed
Execute 00000000 poOOOO11 |0003 2 |suppressed
Protection 00000000 pb0OO100O |0004 1,2,3|suppressed or
terminated
Addressing 00000000 po0OO101 |0005 1,2,3|suppressed or
terminated
Specification 00000000 pb0OOO110 |0006 0,1,2,3|suppressed or
completed
Data 00000000 poOEO111l |0007 1,2,3|suppressed,
terminated,
or
completed
Fixed-pt overflow [xxxxxxxx p0001000 (0008 | 20 1,2 |[completed
Fixed-point divide [00000000 p0OO1001 [0609 1,2 |suppressed or
completed
Decimal overflow 00000000 pOOO1010 |GOOA | 21 2,3|completed
Decimal divide 00000000 po0O1011 |0COB 2,3|suppressed
HFP exp. overflow [xxxxxxxx p0001100 |000C 1,2,3|completed
HFP exp. underflow |xxxxxxxx p0001101 |000D | 22 1,2,3|completed
HFP significance XXXXXXXX p0001110 |OOOE | 23 1,2 |completed
HFP divide XXXXXXXX p0001111 [GOOF 1,2 |suppressed or
inhibited4
Segment trans] 00000000 pOO10000 |0010 1,2,3|nullified
Page translation 00000000 p0O10001 |0O11 1,2,3|nullified
Translation spec 00000000 p0010010 |0012 1,2,3|suppressed
Special operation [00000000 p0010011 |0013 0, 1 1,2,3|suppressed
Operand 00000000 p0O10101 |0O15 2 |suppressed
Trace table 00000000 p0O10110 |0016 1,2 |nullified
ASN-trans1 spec 00000000 p0010111 |0017 1,2,3|suppressed
Vector operation4 |00000000 p0011001 |0019 2,3|nullified
Space-switch event |00000000 p0011100 |001C 1, 0 0,1,2 |completed
HFP square root 00000000 p0O11101 |0O1D 2,3|suppressed or
inhibited
Unnormalized XXXXXXxxX p0011110 |001E 2 |inhibited4
operand4
PC-trans1 spec 00000000 p0O11111 [OO1F 2 |suppressed
AFX translation 00000000 p010000O |0020 1,2 |nullified
ASX translation 00000000 p0106001 (0021 1,2 |nullified
LX translation 00000000 p0100010 |0022 2 |nullified

Figure 6-1 (Part 1 of 3). Interruption Action

Chapter 6. Interruptions 6-3

Mask Bits

in Ctrl Execution of
PSW- |Registers Instruction
Source Interruption Mask ILC |Identified
Identification Code Bits |Reg, Bit| Set |[by 01d PSW
EX translation 00000000 p01000O11 |0023 2 |nullified
Primary authority |00000000 p0100100 [0024 2 |nullified
Secondary auth 00000000 p0100101 [0025 1,2 [nullified
ALET specification |00000000 p0101000 |0028 1,2,3|suppressed
ALEN translation 00000000 p0101001 |0029 1,2,3[nullified
ALE sequence 00000000 p0101010 |0O2A 1,2,3|nullified
ASTE validity 00000000 p0101011 [002B 1,2,3[nullified
ASTE sequence 00000000 p0101100 |002C 1,2,3|nullified
Extended authority (00000000 p0101101 [002D 1,2,3|nullified
Stack full 00000000 p0110000 |0030 2 |nullified
Stack empty 00000000 p0110001 |0O31 1,2 [nullified
Stack specification|00000000 p0110010 |0032 1,2 |nullified
Stack type 00000000 p0110011 |0O33 1,2 [nullified
Stack operation 00000000 p0110100 |0034 1,2 [nullified
Monitor event 00000000 ploOOOOO |0040 8, 16-31 2 |completed
PER event XXXXXXXX lnnnnnnn5 {0080 1 9, 0-48 |0,1,2,3|completeds
EXTERNAL Locations 134-135
(o1d PSW 24,
new PSW 88) Binary Hex3
Interrupt key 00000000 01000000 |0040 7 0, 25 u unaffected
Malfunction alert |[00010010 00000000 |1200 7 0, 16 u unaffected
Emergency signal 00010010 00000001 |1201 7 0, 17 u unaffected
External call 00010010 00000010 |1202 7 0, 18 u unaffected
TOD-clock sync chk [00010000 00000011 |1003 7 0, 19 u unaffected
Clock comparator 00010000 00000100 |1004 7 0, 20 u unaffected
CPU timer 00010000 00000101 |1005 7 0, 21 u unaffected
ETR 00010100 00000110 |1406 7 0, 27 u unaffected
Service signal 00100100 00000001 |2401 7 0, 22 u unaffected
INPUT/OUTPUT Locations 184-191
(o1d PSW 56,
new PSW 120)
I/0-interruption 6 6, 0-77 u unaffected
subclass
RESTART None
(o1d PSW 8,
new PSW 0)
Restart key u unaffected

Figure 6-1 (Part 2 of 3). Interruption Action

6-4

ESA/390 Principles of Operation

Explanation:

Locations for the old PSWs, new PSWs, and interruption codes are real locations.
1 A model-independent machine-check interruption code of 64 bits is stored at

real locations 232-239.
check-interruption code.

unaffected.

the vector facility.

SA22-7207.

cation).

or terminated.

subclasses 0-7 respectively.

masked by control register 9, bit 3.
condition
Bits of the I field of SUPERVISOR CALL.

Not stored.
Exception-extension code.

X © o

is set to zero except by vector instructions.

2 The effect of the machine-check condition is indicated by bits in the machine-
The setting of these bits indicates the extent of
the damage and whether the unit of operation is nullified, terminated, or

3 The interruption code in the column Tabeled "Hex" is the hex code for the
basic interruption; this code does not show the effects of concurrent inter-
ruption conditions represented by n, p, or x in the column labeled "Binary."

4 Vector-operation and unnormalized-operand exceptions are associated with

"Inhibited" is a type of ending which occurs only for

instructions associated with the vector facility.

the publication IBM Enterprise Systems Architecture/390 Vector Operations,

5 When the interruption code indicates a PER event, an ILC of O may be stored
only when bits 8-15 of the interruption code are 10000110 (PER, specifi-

6 The unit of operation is completed, unless a program exception concurrently
indicated causes the unit of operation to be inhibited, nullified, suppressed,

7 Bits 0-7 of control register 6 provide detailed masking of I/0-interruption

8 Additional masks in control register 9, bit positions 16-31, provide detailed
control over the source of PER general-register-alteration events which are

n A possible nonzero code indicating another concurrent program-interruption
If one, the bit indicates a concurrent PER-event interruption condition.

This field is described in the publication IBM
Enterprise Systems Architecture/390 Vector Operations, SA22-7207.

These are described in

This field

Figure 6-1 (Part 3 of 3). Interruption Action

Interruption Code

The six classes of interruptions (external, 1/O,
machine check, program, restart, and supervisor
call) are distinguished by the storage locations at
which the old PSW is stored and from which the
new PSW is fetched. For most classes, the
causes are further identified by an interruption
code and, for some classes, by additional informa-
tion placed in permanently assigned real storage
locations during the interruption. (See also
[‘Assigned Storage Locations” on page 3-43|) For
external, program, and supervisor-call inter-
ruptions, the interruption code consists of 16 bits.

For external interruptions, the interruption code is
stored at real locations 134-135. A parameter
may be stored at real locations 128-131, or a CPU
address may be stored at real locations 132-133.

For 1/O interruptions, the I/O-interruption code is
stored at real locations 184-191. The
I/O-interruption code consists of a 32-bit

subsystem-identification word and a 32-bit inter-
ruption parameter.

For machine-check interruptions, the interruption
code consists of 64 bits and is stored at real
locations 232-239. Additional information for iden-
tifying the cause of the interruption and for recov-
ering the state of the machine may be provided by
the contents of the machine-check failing-storage
address and the contents of the fixed-logout and
machine-check-save areas. (See
[‘Machine-Check Handling.”)|

For program interruptions, the interruption code is
stored at real locations 142-143, and the
instruction-length code is stored in bit positions 5
and 6 of real location 141. Further information
may be provided in the form of the data-exception
code (DXC), translation-exception identification,

| monitor-class number, PER code, addressing-
| and-translation-mode identification, PER address,
| monitor code, exception access identification, and

Chapter 6. Interruptions 6-5

| PER access identification, which are stored at real

locations 144-161.

Enabling and Disabling

By means of mask bits in the current PSW,
floating-point-control (FPC) register, and control
registers, the CPU may be enabled or disabled for
all external, 1/0, and machine-check interruptions
and for some program interruptions. When a
mask bit is one, the CPU is enabled for the corre-
sponding class of interruptions, and those inter-
ruptions can occur.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions
that cause 1/O interruptions remain pending.
External-interruption conditions either remain
pending or persist until the cause is removed.
Machine-check-interruption conditions, depending
on the type, are ignored, remain pending, or
cause the CPU to enter the check-stop state. The
disallowed program-interruption conditions are
ignored, except that some causes are indicated
also by the setting of the condition code, and
IEEE exceptions set flags in the FPC register.
The setting of the HFP-significance and
HFP-exponent-underflow program-mask bits
affects the manner in which HFP operations are
completed when the corresponding condition
occurs. Similarly, the setting of the IEEE mask
bits in the FPC register affects the manner in
which BFP operations are completed when the
corresponding condition occurs.

Programming Notes:

1. Mask bits in the PSW provide a means of dis-
allowing most maskable interruptions; thus,
subsequent interruptions can be disallowed by
the new PSW introduced by an interruption.
Furthermore, the mask bits can be used to
establish a hierarchy of interruption priorities,
where a condition in one class can interrupt
the program handling a condition in another
class but not vice versa. To prevent an
interruption-handling routine from being inter-
rupted before the necessary housekeeping
steps are performed, the new PSW must
disable the CPU for further interruptions within
the same class or within a class of lower pri-
ority.

6-6 ESA/390 Principles of Operation

2. Because the mask bits in control registers are
not changed as part of the interruption proce-
dure, these masks cannot be used to prevent
an interruption immediately after a previous
interruption in the same class. The mask bits
in control registers provide a means for selec-
tively enabling the CPU for some sources and
disabling it for others within the same class.

3. Controlling bits exist for several program inter-
ruptions, but with no mask bit in the PSW.
Such bits include the IEEE mask bits in the
FPC register, the monitor masks in bit posi-
tions 16-31 of control register 8, and the
primary space-switch-event-control bit, bit 0 of
control register 1. A bit of this nature is some-
what arbitrarily considered to be a “mask” bit
only if the polarity is such that interruption is
enabled when the bit is one. Thus, for
example, the SSM-suppression-control bit, bit
1 of control register 0, is considered to be a
mask bit, while the AFP-register-control bit, bit
13 of control register 0, is not. Regardless